Reactions of cationic transition metal acetonitrile complexes [M(CH3CN)n]m+ with GaCp*: novel gallium complexes of iron, cobalt, copper and silver.

Dalton Trans

Anorganische Chemie II, Organometallics and Materials Chemistry, Ruhr-Universität Bochum, Universtitätsstrasse 150, 44780 Bochum, Germany.

Published: February 2009

AI Article Synopsis

  • The study explores the reactions of various cationic transition metal acetonitrile complexes with GaCp*, focusing on complexes of Fe, Co, Cu, and Ag.
  • The reaction of [Fe(CH3CN)6][BArF]2 with GaCp* results in a redox-neutral Cp* transfer to form [Cp*Fe(GaCp*)3][BAr(F)], while Co undergoes oxidation to Co(III) when reacting with GaCp*.
  • The synthesis of new homoleptic and dimeric compounds involving Cu and Ag is reported, all characterized using NMR spectroscopy, X-ray diffraction, and elemental analysis.

Article Abstract

The reactions of the cationic transition metal acetonitrile complexes [M(CH3CN)n]m+ (m = 2: M = Fe, Co and m = 1: M = Cu, Ag) with GaCp* were investigated. The reaction of [Fe(CH3CN)6][BArF]2 (BAr(F) = [B{C6H3(CF3)2}4) with GaCp* leads to [Cp*Fe(GaCp*)3][BAr(F)] (1) via a redox neutral Cp* transfer and [Ga2Cp*][BAr(F)] as a by-product while the formation of [Cp*Co(GaCp*)3][BAr(F)]2 (2) from [Co(CH3CN)6][BAr(F)]2 is accompanied by oxidation of Co(II) to Co(III) with GaCp* as the oxidant. The reactions of [Cu(CH3CN)4][BAr(F)] and Ag[BPh4] with GaCp* lead to the formation of the homoleptic compounds [Cu(GaCp*)4][BAr(F)] (4) and [Ag(GaCp*)4][BPh4] (5), while treatment of Ag[CF3SO3] with GaCp* leads to the dimeric complex [Ag2(GaCp*)3(micro-GaCp*)2][CF3SO3]2 (6). All compounds were characterized by NMR spectroscopy, single crystal X-ray diffraction and elemental analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b815319aDOI Listing

Publication Analysis

Top Keywords

reactions cationic
8
cationic transition
8
transition metal
8
metal acetonitrile
8
acetonitrile complexes
8
complexes [mch3cnn]m+
8
[mch3cnn]m+ gacp*
8
gacp* leads
8
gacp*
6
gacp* novel
4

Similar Publications

Intracellular Delivery of Proteins by Protein-Recognizing Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States.

Intracellular delivery of proteins can directly impact dysregulated and dysfunctional proteins and is a key step in the fast growing field of protein therapeutics. The vast majority of protein-delivery systems enter cells through endocytic pathways, but endosomal escape is a difficult and inefficient process, demanding fundamentally different methods of delivery. We report ultrasmall cationic molecularly imprinted nanoparticles that bind protein targets with high specificity through their uniquely distributed surface lysine groups.

View Article and Find Full Text PDF

Identifying key factors that control the chemical evolution of groundwater along groundwater flow direction is essential in ensuring the safety of groundwater resources in upper watersheds and lower plains. In this study, the ion ratio, multivariate statistics, and inverse geochemical modeling were used to investigate and explore the chemical characteristics of groundwater and factors driving the formation of groundwater components in the plain area of Deyang City, China. The chemical type of groundwater in the area was dominated by the HCO-Ca type, and the variation in groundwater chemical composition was mainly affected by water-rock interaction and human interference.

View Article and Find Full Text PDF

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective.

View Article and Find Full Text PDF

The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (HIso-NH) afforded [MoO(μ-O)(Iso-NH)], a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma) and the other two containing diethylammonium (dea).

View Article and Find Full Text PDF

We report the synthesis, structural characterization and magnetic properties of Kcoronene, and demonstrate a computational screening workflow designed to accelerate the discovery of metal intercalated polycyclic aromatic hydrocarbon (PAH), a class of materials of interest following reports of superconductivity, but lacking demonstrated and understood characterised material compositions. Coronene is identified as a suitable PAH candidate from a library of PAHs for potassium intercalation by computational screening of their electronic structure and of the void space in their crystal structures, targeting LUMO similarity to C and the availability of suitable sites to accommodate inserted cations. Convex hull calculations with energies from crystal structure prediction based on ion insertion into the identified void space of coronene suggest that the = 3 composition in K coronene is stable at 0 K, reinforcing the suitability of coronone for experimental investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!