CO2 photoacoustic spectroscopy was employed to analyze kinetically the CO2/CH4 reaction catalyzed by 14 wt% Ni/Al2O3 and 14 wt% Ni/TiO2. The catalytic reaction was carried out in the temperature range of 673-923 K at various partial pressures of CO2 and CH4 (40 Torr total pressure) in a closed-circulating reactor system. The CO2 photoacoustic signal, measured by using a differential photoacoustic cell, was recorded as a function of reaction time. Under these conditions, Al203 and TiO2 used as supports do not promote the reaction as noted by the lack of changes in the CO2 photoacoustic signal. Reactions run in the presence of H2-reduced supported Ni catalysts are associated with significant time dependent changes in the CO2 photoacoustic signal, while processes carried out in the presence of unreduced catalysts do not. Changes in the CO2 photoacoustic signal at early reaction times provide precise data for the rate of CO2 disappearance. The rate of CO2 disappearance is observed to increase with increasing temperature in the range of 673-923 K. Apparent activation energies for CO2 consumption were calculated to be 15.4 kcal mol(-1) for the Ni/Al2O3- and 14.3 kcal mol(-1) for the Ni/TiO2-catalyzed reactions. Reaction orders, determined from initial rates of CO2 disappearance at 873 K, were found to be 0.48 in CH4 and 0.45 in CO2 for the Ni/Al2O3-promoted process, and 0.38 in CH4 and 0.32 in CO2 for the Ni/TiO2-catalyzed reaction. The results of this effort were compared with those reported previously and were used to construct a mechanism for the low pressure CO2/CH4 reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b709102hDOI Listing

Publication Analysis

Top Keywords

co2 photoacoustic
20
photoacoustic signal
16
co2
12
changes co2
12
co2 disappearance
12
photoacoustic spectroscopy
8
reaction
8
co2/ch4 reaction
8
temperature range
8
range 673-923
8

Similar Publications

Compact and full-range carbon dioxide sensor using photoacoustic and resonance dependent modes.

Photoacoustics

February 2025

Dipartimento di Scienze di Base ed Applicate per l'Ingegneria, Sapienza Università di Roma, Rome 00161, Italy.

A compact and robust optical excitation photoacoustic sensor with a self-integrated laser module excitation and an optimized differential resonator was developed to achieve high sensitivity and full linear range detection of carbon dioxide (CO) based on dual modes of wavelength modulated photoacoustic spectroscopy (WMPAS) and resonant frequency tracking (RFT). The integrated laser module equipped with three lasers (a quantum cascade laser (QCL), a distributed feedback laser (DFB) and a He-Ne laser) working in a time-division multiplexing mode was used as an integrated set of spectroscopic sources for detection of the designated concentration levels of CO. With the absorption photoacoustic mode, the WMPAS detection with the QCL and DFB sources was capable of CO detection at concentrations below 20 %, yielding a noise equivalent concentration (NEC) as low as 240 ppt and a normalized noise equivalent absorption coefficient (NNEA) of 4.

View Article and Find Full Text PDF

Flower-Like Nanosensors for Photoacoustic-Enhanced Lysosomal Escape and Cytoplasmic Marker-Activated Fluorescence: Enabling High-Contrast Identification and Photothermal Ablation of Minimal Residual Disease in Breast Cancer.

Adv Healthc Mater

November 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge.

View Article and Find Full Text PDF

The synthesis of multiple narrow optical spectral lines, precisely and independently tuned across the near- to mid-infrared region, is a pivotal research area that enables selective and real-time detection of trace gas species within complex gas mixtures. However, existing methods for developing such light sources suffer from limited flexibility and very low pulse energy, particularly in the mid-infrared domain. Here, we introduce a concept that is based on the combination of an appropriate design of near-infrared fiber laser pump and cascaded configuration of gas-filled anti-resonant hollow-core fiber technology.

View Article and Find Full Text PDF

We report on sensitive tunable laser absorption spectroscopy using a multipass gas cell and a solid-state photoacoustic optical power detector. Unlike photoacoustic spectroscopy (PAS), this method readily allows a low gas pressure for high spectral selectivity and a free gas flow for continuous measurements. Our photoacoustic optical power detector has a large linear dynamic range and can be used at almost any optical wavelength, including the middle infrared and THz regions that are challenging to cover with traditional optical detectors.

View Article and Find Full Text PDF

Greenhouse gas (GHG) detection plays an important role in climate change research and industry applications. A novel photoacoustic spectroscopy (PAS) sensor based on multiple resonators has been developed for the detection of GHGs. The major GHGs CO, CH, and NO were measured simultaneously using only one acoustic sensor by coupling three acoustic resonators into a photoacoustic cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!