Conformers of formic acid (FA) are studied by IR spectroscopy in solid hydrogen. The higher-energy cis-FA conformer is prepared by vibrational excitation of the ground-state trans-FA conformer. The quantum yield of the trans to cis conformational process in solid hydrogen appears about two orders of magnitude smaller than in solid argon, which is explained by efficient coupling of the vibrationally excited trans form with the host vibrations deactivating the conformational change. The trans to cis conformational process is efficiently promoted by excitation of the hydrogen-matrix rovibrational transitions (host excitation), which confirms the strong coupling between vibrations of the host and embedded molecule. These results demonstrate a unique process of conformational reorganization mediated by vibrational excitation of the host. The tunneling decay of the cis-FA monomer in solid hydrogen is found to be 4 times faster than in solid argon but 30 times slower than in solid neon, and this is discussed in terms of the matrix solvation effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b712647f | DOI Listing |
Int J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:
Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.
Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA.
Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University College of Chemical Engineering, College of Chemical Engineering, CHINA.
Polyethylene oxide (PEO)-based electrolytes are essential to advance all-solid-state lithium batteries (ASSLBs) with high safety/energy density due to their inherent flexibility and scalability. However, the inefficient Li+ transport in PEO often leads to poor rate performance and diminished stability of the ASSLBs. The regulation of intermolecular H-bonds is regarded as one of the most effective approaches to enable efficient Li+ transport, while the practical performances are hindered by the electrochemical instability of free H-bond donors and the constrained mobility of highly ordered H-bonding structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!