We investigated whether mutations in the genes that code for the different subunits of the amiloride-sensitive epithelial sodium channel (ENaC) might result in cystic fibrosis (CF)-like disease. In a small fraction of the patients, the disease could be potentially explained by an ENaC mutation by a Mendelian mechanism, such as p.V114I and p.F61L in SCNN1A. More importantly, a more than three-fold significant increase in incidence of several rare ENaC polymorphisms was found in the patient group (30% vs. 9% in controls), indicating an involvement of ENaC in some patients by a polygenetic mechanism. Specifically, a significantly higher number of patients carried c.-55+5G>C or p.W493R in SCNN1A in the heterozygous state, with odds ratios (ORs) of 13.5 and 2.7, respectively.The p.W493R-SCNN1A polymorphism was even found to result in a four-fold more active ENaC channel when heterologously expressed in Xenopus laevis oocytes. About 1 in 975 individuals in the general population will be heterozygous for the hyperactive p.W493R-SCNN1A mutation and a cystic fibrosis transmembrane conductance regulator (CFTR) gene that results in very low amounts (0-10%) functional CFTR. These ENaC/CFTR genotypes may play a hitherto unrecognized role in lung diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21011DOI Listing

Publication Analysis

Top Keywords

amiloride-sensitive epithelial
8
epithelial sodium
8
sodium channel
8
cystic fibrosis
8
enac
5
mutations amiloride-sensitive
4
patients
4
channel patients
4
patients cystic
4
cystic fibrosis-like
4

Similar Publications

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Salt-sensitive blood pressure is a clinical phenotype defined as exaggerated blood pressure responses to salt loading and salt depletion. This characteristic occurs in 25% of the general population and 50% of patients with hypertension and contributes to the pathogenesis of hypertension in some patients. Hypertension is associated with chronic inflammatory responses and has immune cell accumulation in several hypertensive target organs, including the brain, kidneys, heart, blood vessels, and the perivascular adipose tissue, and these cellular responses likely exacerbate hypertension.

View Article and Find Full Text PDF

Pulmonary manifestations of Pseudohypoaldosteronism type 1b: A systematic review of the literature.

Paediatr Respir Rev

September 2024

Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine and Agia, Sofia Children's Hospital, Athens, Greece.

Introduction: Pseudohypoaldosteronism type 1b (PHA1B) is a rare autosomal recessive disease caused by dysfunction of amiloride-sensitive epithelial sodium channels (ENaC), that might present with a wide variety of pulmonary symptoms.

Methods: We provide a systematic review of published cases with PHA1B and respiratory symptoms, adding a relevant case from our clinic.

Results: Thirty-seven publications presenting 61 cases were identified apart from our case.

View Article and Find Full Text PDF

Studies on taste bud cells and brain stem relay nuclei suggest that alternative pathways convey information regarding different taste qualities. Building on the hypothesis that amiloride (epithelial Na channel antagonist)-sensitive neurons respond to palatable salt (low-concentration) and amiloride-insensitive neurons respond to aversive salt (high-concentration), we investigated the histological distribution of taste-sensitive neurons in the rostral nucleus of the solitary tract in rats and their NaCl and amiloride sensitivities. We recorded neuronal activity in extracellular single units using multi-barrel glass micropipettes and reconstructed their locations on the rostrocaudal and mediolateral axes.

View Article and Find Full Text PDF

Epithelial Na channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (α mice). On a normal Na control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and α mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!