A mechanism for triflusal-induced photoallergy involving complexation of 2-hydroxy-4-trifluoromethylbenzoic acid with site I of human serum albumin and subsequent formation of a covalent adduct by photoreaction between a metabolite and a neighboring lysine residue is proposed. This is supported by the observed photobinding to poly-L-lysine. Thereby, a photoantigen is generated, which is a likely trigger of the immune response.The goal of the work presented herein is to gain deeper insight into the molecular basis of photoallergy mediated by triflusal through its active metabolite, 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). For this purpose, the interaction between HTB and human serum albumin (HSA) was investigated by fluorescence and laser flash photolysis to monitor inclusion into the protein binding sites through variation in the excited-state properties. A remarkable lengthening of HTB triplet lifetime in the presence of HSA was observed. The use of oleic acid as a displacement probe clearly suggests the preference for dark binding in site I. The mechanism of photobinding was studied by irradiation of HTB in the presence of amino acids, and, in the case of lysine, a photoadduct was detected that arises from nucleophilic attack by the epsilon-amino group to the trifluoromethyl substituent of HTB. Accordingly, photobinding of the metabolite to poly-L-lysine was also observed. Overall, these results are consistent with a mechanism for triflusal photoallergy involving complexation of HTB to site I of HSA and subsequent formation of a covalent photoadduct with one neighboring lysine residue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.200900066 | DOI Listing |
Recent Pat Anticancer Drug Discov
January 2025
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.
Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
ConspectusSelective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification.
View Article and Find Full Text PDFJ Bacteriol
December 2024
Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
Unlabelled: The methylation of ε-amino groups in protein lysine residues is an important posttranslational modification in eukaryotes. This modification plays a pivotal role in the regulation of diverse biological processes, including epigenetics, transcriptional control, and cellular signaling. Recent research has begun to reveal the potential role of methylation in modulating bacterial immune evasion and adherence to host cells.
View Article and Find Full Text PDFTo discriminate amino acid isomers by multiple stage tandem mass spectrometry (MS), the fragmentation of protonated amino acids were investigated by MS with collision-induced dissociation (CID) and density functional theory calculations. The CID of protonated α-amino acids results in a loss of 46 Da, corresponding to HO and CO, and iminium ions appear as resultant fragments. The CID of protonated β-amino acids also produces iminium ions, but the corresponding loss is 60 Da instead of 46 Da.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
January 2025
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia. Electronic address:
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are key enzymes of amino acid metabolism in cells and remarkable biocatalysts of stereoselective amination for process chemistry applications. As cofactor-dependent enzymes, transaminases are prone to cofactor leakage. Here we discuss the holoenzyme-apoenzyme interconversion and the kinetics of PLP incorporation into the apo form of a PLP-dependent transaminase from Haliscomenobacter hydrossis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!