Using aptamers evolved from cell-SELEX to engineer a molecular delivery platform.

Chem Commun (Camb)

Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA.

Published: June 2009

We report a chemically modified construct of the Sgc8 aptamer, selected against CEM cells, conjugated to an activator platform for stimulated release of molecules at the tumor surface using DNA template assisted functional group transfer reactions (DTGTR).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b823258jDOI Listing

Publication Analysis

Top Keywords

aptamers evolved
4
evolved cell-selex
4
cell-selex engineer
4
engineer molecular
4
molecular delivery
4
delivery platform
4
platform report
4
report chemically
4
chemically modified
4
modified construct
4

Similar Publications

Integrating Metal-Organic Framework Hybrid into Nucleic Acid-Based Hydrogel for Highly Selective Recognition and Sensitive Detection of Sarafloxacin.

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China.

Metal-organic framework-based hybrids (MOFzyme) have promising applications in colorimetric aptasensors due to their highly efficient and stable catalytic activity. However, their efficient application in biosensors remains a challenging issue due to the limited reaction site and amorphous structure. Herein, we encapsulated catalase inside MOF cavities to prepare an MOFzyme with many functional groups on its surface, and the functional groups were utilized for the subsequent integration of MOFzyme into the hyaluronic acid-DNA hydrogel.

View Article and Find Full Text PDF

Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.

View Article and Find Full Text PDF

Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.

Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.

View Article and Find Full Text PDF

Trends in Aptasensing and the Enhancement of Diagnostic Efficiency and Accuracy.

ACS Synth Biol

January 2025

Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.

The field of healthcare diagnostics is navigating complex challenges driven by evolving patient demographics and the rapid advancement of new technologies worldwide. In response to these challenges, these biosensors offer distinctive advantages over traditional diagnostic methods, such as cost-effectiveness, enhanced specificity, and adaptability, making their integration with point-of-care (POC) platforms more feasible. In recent years, aptasensors have significantly evolved in diagnostic capabilities through the integration of emerging technologies such as microfluidics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems, wearable devices, and machine learning (ML), driving progress in precision medicine and global healthcare solutions.

View Article and Find Full Text PDF

A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology.

J Biotechnol

February 2025

National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India. Electronic address:

The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!