The Serum and Glucocorticoid-regulated Kinase1 (SGK1) gene is a target of the glucocorticoid receptor (GR) and is central to the stress response in many human tissues. Because environmental stress varies across habitats, we hypothesized that natural selection shaped the geographic distribution of genetic variants regulating the level of SGK1 expression following GR activation. By combining population genetics and molecular biology methods, we identified a variant (rs9493857) with marked allele frequency differences between populations of African and European ancestry and with a strong correlation between allele frequency and latitude in worldwide population samples. This SNP is located in a GR-binding region upstream of SGK1 that was identified using a GR ChIP-chip. SNP rs9493857 also lies within a predicted binding site for Oct1, a transcription factor known to cooperate with the GR in the transactivation of target genes. Using ChIP assays, we show that both GR and Oct1 bind to this region and that the ancestral allele at rs9493857 binds the GR-Oct1 complex more efficiently than the derived allele. Finally, using a reporter gene assay, we demonstrate that the ancestral allele is associated with increased glucocorticoid-dependent gene expression when compared to the derived allele. Our results suggest a novel paradigm in which hormonal responsiveness is modulated by sequence variation in the regulatory regions of nuclear receptor target genes. Identifying such functional variants may shed light on the mechanisms underlying inter-individual variation in response to environmental stressors and to hormonal therapy, as well as in the susceptibility to hormone-dependent diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2679193 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000489 | DOI Listing |
bioRxiv
January 2025
Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016.
Populations of proliferating cells such as stem cells and tumors are often nutrient responsive. Highly conserved signaling pathways communicate information about the surrounding environmental, organismal, and cellular nutrient conditions. One such pathway is the Target of Rapamycin (TOR) pathway.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Korea.
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles at the single-cell level. Hence, we evaluated gene expression in the peripheral blood of patients with COPD.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).
Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.
J Oral Biol Craniofac Res
December 2024
Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, India.
Background: Periodontitis is considered to be one of the major risk factors associated with cancers of the oral cavity. Periodontogenic pathogens such as and are the important pathogens associated with periodontitis. Chronic exposure to bacterial components induces changes in the nearby cells.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2025
Department of Cardiac Surgery (S.L., H.L., P.Z., Z.D., B.S., S.X., Y.N., X.T., L.Z., H.W., N.L., F.Z., W.Y.), Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background: The occurrence of thoracic aortic dissection (TAD) is closely related to the transformation of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. The role of SGK1 (serum- and glucocorticoid-regulated kinase 1) in VSMC phenotypic transformation and TAD occurrence is unclear.
Methods: Four-week-old male Sgk1 ( floxed) and Sgk1;Tagln (smooth muscle cell-specific knockout) mice were administered β-aminopropionitrile monofumarate for 4 weeks to model TAD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!