Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient outward K+ channel (I(to)), is a Ca(2+)-binding protein whose regulatory functions do not appear restricted to K(V)4.2. Consequently, we hypothesized that KChIP2 is a direct regulator of the cardiac L-type Ca2+ current (I(Ca,L)). We found that I(Ca,L) density from KChIP2(-/-) myocytes is reduced by 28% compared to I(Ca,L) recorded from wild-type myocytes (P<0.05). This reduction in current density results from loss of a direct effect on the Ca2+ channel current, as shown in a transfected cell line devoid of confounding cardiac ion currents. I(Ca,L) regulation by KChIP2 was independent of Ca2+ binding to KChIP2. Biochemical analysis suggested a direct interaction between KChIP2 and the Ca(V)1.2 alpha(1C) subunit N terminus. We found that KChIP2 binds to the N-terminal inhibitory module of alpha(1C) and augments I(Ca,L) current density without increasing Ca(V)1.2 protein expression or trafficking to the plasma membrane. We propose a model in which KChIP2 impedes the N-terminal inhibitory module of Ca(V)1.2, resulting in increased I(Ca,L). In the context of recent reports that KChIP2 modulates multiple K(V) and Na(V) currents, these results suggest that KChIP2 is a multimodal regulator of cardiac ionic currents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730599 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.109.196972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!