Infection by Aspergillus fumigatus, which causes the life-threatening disease invasive aspergillosis, begins with the inhalation of conidia that adhere to and germinate in the lung. Previous studies have shown that A. fumigatus conidia express high levels of the negatively charged 9-carbon sugar sialic acid, and that sialic acid appears to mediate the binding of A. fumigatus conidia to basal lamina proteins. However, despite the ability of sialic acid to inhibit adherence of A. fumigatus conidia, the exact mechanism by which this binding occurs remains unresolved. Utilizing various free sialic acids and other carbohydrates, sialic acid derivatives, sialoglycoconjugates, glycoproteins, alpha-keto acid related compounds and amino acids we have found that the binding of A. fumigatus conidia to type IV collagen and fibrinogen was inhibited by (i) glycoproteins (in a sialic acid-independent manner), and (ii) free sialic acids, glucuronic acid and alpha-keto acid related compounds. However, inhibition by the latter was found to be the result of a shift in pH from neutral (pH 7.4) to acidic (less than pH 4.6) induced by the relatively high concentrations of free sialic acids, glucuronic acid and alpha-keto acid related compounds used in the binding assays. This suggests that previous reports describing inhibition of A. fumigatus conidia binding by free sialic acid may actually be due to a pH shift similar to that shown here. As previously reported, we found that A. fumigatus conidia express only N-acetylneuraminic acid, the most common sialic acid found in nature. However, A. fumigatus appears to do so by an alternative mechanism to that seen in other organisms. We report here that A. fumigatus (i) does not incorporate sialic acid obtained from the environment, (ii) does not synthesize and incorporate sialic acid from exogenous N-acetylmannosamine, and (iii) lacks homologues of known sialic acid biosynthesizing enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.026997-0DOI Listing

Publication Analysis

Top Keywords

sialic acid
36
fumigatus conidia
28
sialic acids
16
free sialic
16
acid
15
sialic
14
alpha-keto acid
12
acid compounds
12
fumigatus
10
aspergillus fumigatus
8

Similar Publications

SLC35A2 modulates paramyxovirus fusion events during infection.

PLoS Pathog

January 2025

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection.

View Article and Find Full Text PDF

A Susceptible Cell-Selective Delivery (SCSD) of mRNA-Encoded Cas13d Against Influenza Infection.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.

To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA.

Cells

December 2024

Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!