A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. | LitMetric

The pha1 gene cluster (pha1A'-G) of Sinorhizobium meliloti has previously been characterized as a necessary component for proper invasion into plant root tissue. It has been suggested to encode a multi-subunit K(+)/H(+) antiporter, since mutations in the pha1 region rendered S. meliloti cells sensitive to K(+) and alkali, and because there is high amino acid sequence similarity to previously characterized multi-subunit cation/H(+) antiporters (Mrp antiporters). However, the detailed transport properties of the Pha1 system are yet to be determined. Interestingly, most of the Mrp antiporters are highly selective for Na(+), unlike the Pha1 system. Here, we report the functional expression of the Pha1 system in Escherichia coli and the measurement of cation/H(+) antiport activity. We showed that the Pha1 system is indeed a K(+)/H(+) antiporter with a pH optimum under mildly alkaline conditions. Moreover, we found that the Pha1 system can transport Na(+); this was unexpected based on previous phenotypic analyses of pha1 mutants. Furthermore, we demonstrated that the cation selectivity of the Pha1 system was altered when the pH was lowered from the optimum. The downregulation of Na(+)/H(+) and K(+)/H(+) antiport activities upon acidic shift appeared to occur via different processes, which might indicate the presence of distinct mechanisms for the regulation of the K(+)/H(+) and Na(+)/H(+) antiport activities of the Pha1 system.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.028563-0DOI Listing

Publication Analysis

Top Keywords

pha1 system
32
pha1
11
system
8
sinorhizobium meliloti
8
k+/h+ antiporter
8
mrp antiporters
8
antiport activities
8
ph-dependent regulation
4
regulation multi-subunit
4
multi-subunit cation/proton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!