MicroRNAs (miRNAs) are short non-coding RNA that post-transcriptionally regulates gene expression. Some miRNAs have been proposed to be associated with obesity. However, miRNAs, which are related to the development of obesity in vivo remains unknown. Here in, we found the up-regulation of miR-335 in obesity using microarray analysis for miRNA. The expressions of miR-335 in liver and white adipose tissue (WAT) were up-regulated in obese mice including ob/ob, db/db, and KKAy mice. Increased miR-335 expressions were associated with an elevated body, liver and WAT weight, and hepatic triglyceride and cholesterol. Furthermore, miR-335 levels were closely correlated with expression levels of adipocyte differentiation markers such as PPARgamma, aP2, and FAS in 3T3-L1 adipocyte. These findings provide the first evidence that the up-regulated expressions of miR-335 in liver and WAT of obese mice might contribute to the pathophysiology of obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.05.058DOI Listing

Publication Analysis

Top Keywords

obese mice
12
liver white
8
white adipose
8
adipose tissue
8
expressions mir-335
8
mir-335 liver
8
liver wat
8
mir-335
5
up-regulation microrna-335
4
microrna-335 associated
4

Similar Publications

It is well recognized that type II Diabetes (T2D) and overweight/obesity are established risk factors for stroke, worsening also their consequences. However, the underlying mechanisms by which these disorders aggravate outcomes are not yet clear limiting the therapeutic opportunities. To fill this gap, we characterized, for the first time, the effects of T2D and obesity on the brain repair mechanisms occurring 7 days after stroke, notably glial scarring.

View Article and Find Full Text PDF

Establishing a standardized murine orthotopic intra-rectal model for the study of colorectal adenocarcinoma.

J Gastrointest Oncol

December 2024

Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.

Background: Orthotopic models offer a more accurate representation of colorectal cancer (CRC) compared to subcutaneous models. Despite promising results from the reported intra-rectal models, establishing a standardized method for CRC research remains challenging due to model variability, hindering comprehensive studies on CRC pathogenesis and treatment modalities, such as brachytherapy. This study aimed to establish a standardized workflow for an orthotopic intra-rectal animal model to induce the growth of colorectal adenocarcinoma in male and female mice.

View Article and Find Full Text PDF

Background: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function.

Methods And Results: Here, we report that diet-induced obesity (DIO) in mice induces lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria.

View Article and Find Full Text PDF

Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction.

Biomed Pharmacother

January 2025

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:

Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.

View Article and Find Full Text PDF

Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!