Background: Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the role that ecology and geography play in speciation, we carried out a countrywide analysis of An. gambiae M and S habitat requirements, and that of their chromosomal variants, across Burkina Faso.
Results: Maps of relative abundance by geostatistical interpolators produced a distinct pattern of distribution: the M-form dominated in the northernmost arid zones, the S-form in the more humid southern regions. Maps of habitat suitability, quantified by Ecological Niche Factor Analysis based on 15 eco-geographical variables revealed less contrast among forms. M was peculiar as it occurred proportionally more in habitat of marginal quality. Measures of ecological niche breadth and overlap confirmed the mismatch between the fundamental and realized patterns of habitat occupation: forms segregated more than expected from the extent of divergence of their environmental envelope--a signature of niche expansion. Classification of chromosomal arm 2R karyotypes by multilocus genetic clustering identified two clusters loosely corresponding to molecular forms, with 'mismatches' representing admixed individuals due to shared ancestral polymorphism and/or residual hybridization. In multivariate ordination space, these karyotypes plotted in habitat of more marginal quality compared to non-admixed, 'typical', karyotypes. The distribution of 'typical' karyotypes along the main eco-climatic gradient followed a consistent pattern within and between forms, indicating an adaptive role of inversions at this geographical scale.
Conclusion: Ecological segregation between M and S is consistent with niche expansion into marginal habitats by chromosomal inversion variants during early lineage divergence; presumably, this process is promoted by inter-karyotype competition in the higher-quality core habitat. We propose that the appearance of favourable allelic combinations in other regions of suppressed recombination (e.g. pericentromeric portions defining speciation islands in An. gambiae) fosters development of reproductive isolation to protect linkage between separate chromosomal regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702294 | PMC |
http://dx.doi.org/10.1186/1472-6785-9-16 | DOI Listing |
Insects
December 2024
School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China.
Invasive alien species often undergo shifts in their ecological niches when they establish themselves in environments that differ from their native habitats. Fisher LaSalle (Hymenoptera: Eulophidae), specifically, has caused huge economic losses to trees in Australia. The global spread of cultivation has allowed to threaten plantations beyond its native habitat.
View Article and Find Full Text PDFInsects
December 2024
Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.
, commonly known as the tiger butterfly, is a visually appealing species in the Danaidae family. As it is not currently classified as endangered, it is excluded from key protected species lists at national and local levels, limiting focus on its population and habitat status, which may result in it being overlooked in local butterfly conservation initiatives. Yunnan, characterized by high butterfly diversity, presents an ideal region for studying habitat suitability for , which may support the conservation of regional biodiversity.
View Article and Find Full Text PDFCancer Cell
December 2024
Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.
View Article and Find Full Text PDFBiosystems
December 2024
Institute of Philosophy and Law, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Department of International Relations and Regional Studies, Novosibirsk State Technical University, Novosibirsk, Russia.
This article presents a refinement of theoretical explanations of the main stages of linguistic and cognitive evolution in anthropogenesis. The concepts of language, consciousness, self-consciousness, the self, the unconscious, the subconscious, and the relation between free will and determinism remain at the center of active and complex debates in philosophy and neuroscience. A basic theoretical apparatus comprising the central concepts of "concern" and "providing structure" (an extension of the biological concept of "adaptation") develops the paradigm of the extended evolutionary synthesis.
View Article and Find Full Text PDFAm J Trop Med Hyg
December 2024
Graduate Program in Biological Sciences, Center for Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!