AI Article Synopsis

  • Penicillium antifungal protein (PAF) is a non-toxic potential treatment for lethal Aspergillus infections, acting through specific signaling pathways leading to fungal cell death.
  • The study reveals that PAF's structure consists of five beta-strands in two interacting sheets, similar to another antifungal protein from Aspergillus giganteus, but with unresolved disulfide bond configurations.
  • Additionally, PAF has a toxic, positively-charged surface that enhances its antifungal activity, yet it is less effective in binding certain sugars due to reduced aromatic exposure.

Article Abstract

Penicillium antifungal protein (PAF) is a promising antimycotic without toxic effects on mammalian cells and therefore may represent a drug candidate against the often lethal Aspergillus infections that occur in humans. The pathogenesis of PAF on sensitive fungi involves G-protein coupled signalling followed by apoptosis. In the present study, the solution structure of this small, cationic, antifungal protein from Penicillium chrysogenum is determined by NMR. We demonstrate that PAF belongs to the structural classification of proteins fold class of its closest homologue antifungal protein from Aspergillus giganteus. PAF comprises five beta-strands forming two orthogonally packed beta-sheets that share a common interface. The ambiguity in the assignment of two disulfide bonds out of three was investigated by NMR dynamics, together with restrained molecular dynamics calculations. The clue could not be resolved: the two ensembles with different disulfide patterns and the one with no S-S bond exhibit essentially the same fold. (15)N relaxation dispersion and interference experiments did not reveal disulfide bond rearrangements via slow exchange. The measured order parameters and the 3.0 ns correlation time are appropriate for a compact monomeric protein of this size. Using site-directed mutagenesis, we demonstrate that the highly-conserved and positively-charged lysine-rich surface region enhances the toxicity of PAF. However, the binding capability of the oligosaccharide/oligonucleotide binding fold is reduced in PAF compared to antifungal protein as a result of less solvent-exposed aromatic regions, thus explaining the absence of chitobiose binding. The present study lends further support to the understanding of the documented substantial differences between the mode of action of two highly homologous antifungal proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290664PMC
http://dx.doi.org/10.1111/j.1742-4658.2009.07011.xDOI Listing

Publication Analysis

Top Keywords

antifungal protein
20
solution structure
8
protein penicillium
8
penicillium chrysogenum
8
antifungal
6
protein
6
paf
6
functional aspects
4
aspects solution
4
structure dynamics
4

Similar Publications

Lanosterol 14α-Demethylase (CYP51)/Heat Shock Protein 90 (Hsp90) Dual Inhibitors for the Treatment of Invasive Candidiasis.

J Med Chem

January 2025

The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.

Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism.

View Article and Find Full Text PDF

Mechanisms of resistance to cell wall and plasma membrane targeting antifungal drugs in Candida species isolated in Africa.

Expert Rev Anti Infect Ther

January 2025

Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.

Introduction: There is a rise in the emergence of multidrug resistant fungal pathogens worldwide, including in Africa.

Method: This systematic review summarized the published data on the mechanisms and epidemiology of antifungal resistance in species in Africa between 2000 and early 2024.

Result: Seventeen reports from seven African countries were analyzed but due to the paucity of data, the prevalence of antifungal resistant isolates in Africa could not be estimated.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Alanine supplementation enhancing cordycepin production in Cordyceps militaris via upregulation of Cns2 and Cns3 genes expression levels.

J Food Drug Anal

December 2024

Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.

Cordycepin, a key bioactive compound produced by Cordyceps militaris, faces the challenge of low productivity for commercial use. In this study, alanine supplementation in Cordyceps militaris boosted cordycepin production, peaking at 3 mg/g with 12 g/L concentration. Transcriptome analysis revealed 1711 differentially expressed genes, Pathway analysis indicates that protein processing in the endoplasmic reticulum was the most affected pathway.

View Article and Find Full Text PDF

species, the leading cause of dermatophytosis globally, are increasingly resistant to antifungal treatments, concerns about effective management strategies. In light of the absence of established resistance criteria for terbinafine and azoles, coupled with a dearth of research on resistance mechanisms in , antifungal susceptibility and drug resistance gene diversity were analyzed across 64 , 65 , and 2  isolates collected in China between 2001 and 2024 and 101 published strains. Analyses of the minimum inhibitory concentrations (MICs) of terbinafine, itraconazole, voriconazole, posaconazole, and isavuconazole revealed a concerning increase in with terbinafine resistance, including two novel isolates from China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!