Flavin-dependent thymidylate synthases (FDTS) catalyze the production of dTMP from dUMP and N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (CH(2)H(4)folate). In contrast to human and other classical thymidylate synthases, the activity of FDTS depends on a FAD coenzyme, and its catalytic mechanism is very different. Several human pathogens rely on this recently discovered enzyme, making it an attractive target for novel antibiotics. Like many other flavoenzymes, FDTS can function as an oxidase, which catalyzes the reduction of O(2) to H(2)O(2), using reduced NADPH or other reducing agents. In this study, we exploit the oxidase activity of FDTS from Thermatoga maritima to probe the binding and release features of the substrates and products during its synthase activity. Results from steady-state and single-turnover experiments suggest a sequential kinetic mechanism of substrate binding during FDTS oxidase activity. CH(2)H(4)folate competitively inhibits the oxidase activity, which indicates that CH(2)H(4)folate and O(2) compete for the same reduced and dUMP-activated enzymatic complex (FDTS-FADH(2)-NADP(+)-dUMP). These studies imply that the binding of CH(2)H(4)folate precedes NADP(+) release during FDTS activity. The inhibition constant of CH(2)H(4)folate towards the oxidase activity was determined to be rather small (2 microm), which indicates a tight binding of CH(2)H(4)folate to the FDTS-FADH(2)-NADP(+)-dUMP complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749737 | PMC |
http://dx.doi.org/10.1111/j.1742-4658.2009.07003.x | DOI Listing |
PeerJ
January 2025
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .
Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .
Clin Transl Sci
January 2025
Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
In neurovascular settings, including treatment and prevention of ischemic stroke and prevention of thromboembolic complications after percutaneous neurointerventional procedures, dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is the standard of care. Clopidogrel remains the most commonly prescribed P2Y12 inhibitor for neurovascular indications. However, patients carrying CYP2C19 no-function alleles have diminished capacity for inhibition of platelet reactivity due to reduced formation of clopidogrel's active metabolite.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method.
View Article and Find Full Text PDFEcotoxicology
January 2025
Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
Spodoptera litura (Lepidoptera: Noctuidae) is one of the most destructive insect pests. Insecticides remain the principal management tool to control this pest. However, indiscriminate use of insecticides has resulted in the development of resistance to a variety of insecticides in S.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.
In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!