Enzymatic degradation of κ-carrageenan in aqueous solution.

Biomacromolecules

Université Pierre et Marie Curie, Paris VI, CNRS, Marine Plants and Biomolecules, UMR 7139, Station Biologique, BP 74, F29680 Roscoff Cedex, France.

Published: July 2009

Enzymatic degradation of standard κ-carrageenan and the low-gelling hybrid κ-/μ-carrageenan were conducted using recombinant Pseudoalteromonas carrageenovora κ-carrageenase. The initial velocity of the enzyme was determined as a function of varying Tris or NaI concentrations and at constant 200 mM cosolutes concentration, adjusting NaI and Tris concentrations accordingly. In both cases, we observed strong inhibition of the enzyme with increasing amounts of iodide. The characterization of the κ- and κ-/μ-carrageenan ordering by optical rotation and the visualization of iodide binding on carrageenan by (127)I NMR revealed that inhibition was not caused by the disordered-ordered transition of carrageenan in NaI, but by iodide binding. These results were confirmed by analysis of the degradation products by gel permeation chromatography. Degradation of carrageenan in the disordered state led to a rapid decrease in molecular mass and the production of all possible neo-κ-carrabiose oligomers. In the ordered conformation, the degradation kinetics, the decrease of average molecular weight, and the chain population distribution of degradation products varied with iodide concentration. These observations were interpreted to be the result of increasing amounts of bound iodide on carrageenan helices that, in turn, impede enzyme catalysis. Based on these results, we propose a single-helix ordered conformation state for κ-carrageenan and reject the previously advocated double-helix model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm9001766DOI Listing

Publication Analysis

Top Keywords

enzymatic degradation
8
increasing amounts
8
iodide binding
8
degradation products
8
ordered conformation
8
degradation
5
iodide
5
degradation κ-carrageenan
4
κ-carrageenan aqueous
4
aqueous solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!