Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pinning of a liquid contact line by micro/nanoscale defects is attributed as the physical origin of macroscopic contact angle hysteresis. However, direct experimental quantification of the pinning effect at the nanoscale has yet to be fully explored to establish this link. Here we present an experimental technique to systematically investigate the wetting behaviors of individual hydrophilic nanostructures with diameters from 2000 nm down to 75 nm. Our results show that the macroscopic pinning behavior is preserved for nanostructures with dimensions down to approximately 200 nm. In addition, the estimated depinning liquid contact angle at the nanoscale is in agreement with the macroscopic receding contact angle, which indicates a physical link between nanoscopic pinning to the macroscopic liquid receding phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la900874f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!