The treatment of infections caused by bacteria resistant to the vast majority of antibiotics is a challenge worldwide. To evaluate the effect of S-thanatin (an analog of thanatin, a cationic antimicrobial peptide isolated from the hemipteran insect Podisus maculiventris) against microbial resistant to antibiotics, we studied its bactericidal kinetics, synergistic effect, resistance, and activity on clinical isolates of Klebsiella pneumoniae resistant to conventional antibiotics with different structures. The bactericidal rate of S-thanatin was more than 99% against K. pneumoniae ATCC 700603 when bacterial cultures were monitored for 60 min. The peptide was synergistic with beta-lactam cefepime in most of the clinical MDR isolates tested (7/8). An average value of FIC was 0.3708. No synergy was found between the peptide and amoxicillin, gentamycin, tetracycline, or ciprofloxacin in all bacteria tested. A total of 48 isolates of K. pneumoniae with different resistance spectrum tested was susceptible to S-thanatin. The MICs were 6.25-25 mug/ml. No significant difference in the MICs of S-thanatin between the sensitive isolates and the resistant isolates to single antibiotic was observed (P > 0.05). The resistance of K. pneumoniae ATCC 700603 to S-thanatin was slightly higher, when cultured at sub-inhibitory concentration for 5 days. S-thanatin may be an attractive candidate for developing into an antimicrobial agent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-009-9410-2DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
8
clinical isolates
8
isolates klebsiella
8
klebsiella pneumoniae
8
pneumoniae resistant
8
resistant conventional
8
conventional antibiotics
8
antibiotics structures
8
pneumoniae atcc
8
atcc 700603
8

Similar Publications

AI Methods for Antimicrobial Peptides: Progress and Challenges.

Microb Biotechnol

January 2025

Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Background: An explicit molecular level understanding of Alzheimer's Disease (AD) remains elusive. What initiates the disease and why does it progress? Answering these questions will be crucial to the development of much needed new diagnostics and therapeutics. Though the amyloid hypothesis is often debated, recent biologic trial results support a role for Aβ in AD pathogenesis.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is diagnosed via postmortem detection of extracellular amyloid beta (Aβ) plaques or oligomers and intracellular hyperphosphorylated tau. These canonical pathologies are key players in AD etiology. A complementary line of research suggests that common human pathogens serve as the initial seeding agents which facilitate the pathologies of AD.

View Article and Find Full Text PDF

Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!