Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Disease prevalence is the combined result of duration, disease incidence, case fatality, and other mortality. If information is available on all these factors, and on fixed covariates such as genotypes, prevalence information can be utilized in the estimation of the effects of the covariates on disease incidence. Study cohorts that are recruited as cross-sectional samples and subsequently followed up for disease events of interest produce both prevalence and incidence information. In this paper, we make use of both types of information using a likelihood, which is conditioned on survival until the cross section. In a simulation study making use of real cohort data, we compare the proposed conditional likelihood method to a standard analysis where prevalent cases are omitted and the likelihood expression is conditioned on healthy status at the cross section.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/biostatistics/kxp013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!