Controlling both growth and differentiation of stem cells and their differentiated somatic progeny is a challenge in numerous fields, from preclinical drug development to clinical therapy. Recently, new insights into the underlying molecular mechanisms have unveiled key regulatory roles of epigenetic marks driving cellular pluripotency, differentiation and self-renewal/proliferation. Indeed, the transcription of genes, governing cell-fate decisions during development and maintenance of a cell's differentiated status in adult life, critically depends on the chromatin accessibility of transcription factors to genomic regulatory and coding regions. In this review, we discuss the epigenetic control of (liver-specific) gene-transcription and the intricate interplay between chromatin modulation, including histone (de)acetylation and DNA (de)methylation, and liver-enriched transcription factors. Special attention is paid to their role in directing hepatic differentiation of primary hepatocytes and stem cells in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2009.03.009DOI Listing

Publication Analysis

Top Keywords

differentiation stem
8
stem cells
8
transcription factors
8
role epigenetics
4
epigenetics liver-specific
4
liver-specific gene
4
transcription
4
gene transcription
4
transcription hepatocyte
4
differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!