Metallothioneins (MTs) are a family of multifunctional proteins involved, among others, in stress response. The Cadmium (Cd)-MT gene of the Roman snail (Helix pomatia), for example, encodes for a protein induced upon cadmium exposure. While our previous studies have demonstrated that the expressed Cd-MT isoform of Roman snails assists detoxification of cadmium, the present work focuses on the potential plasticity of this gene in response to a variety of environmental stressors playing a crucial role in the specific ecological niche of H. pomatia. Our hypothesis is based on a bioinformatic approach involving gene sequencing, structural and in silico analysis of transcription factor binding sites (TFBs), and a comparison of these features with other MT genes. Our results show that the Roman snail's Cd-MT gene not only is the largest known MT gene, but also contains--apart from the regulatory promoter region--several intronic repeat cassettes of putative TFBs suggested to be involved in environmental stress response, immune competence, and regulation of gene expression. Moreover, intronic scaffold/matrix attachment regions (S/MARs) and stress-induced duplex destabilization sites confer a high potential for epigenetic gene regulation. This suggested regulatory plasticity is also supported by physiological data showing that Cd-MT in Roman snails can be induced differentially not only after cadmium exposure, but also in response to nonmetallic environmental stressors. It is concluded that structural analysis combined with bioinformatic screening may constitute valuable tools for predicting the potential for plasticity and niche-specific adaptation of stress-responsive genes in populations living under rapidly changing environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2009.04191.xDOI Listing

Publication Analysis

Top Keywords

roman snail
8
gene
8
environmental stress
8
stress response
8
cd-mt gene
8
cadmium exposure
8
roman snails
8
potential plasticity
8
environmental stressors
8
roman
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!