Alpha-internexin and the neurofilament triplet proteins (NF-L, NF-M, and NF-H) co-assemble into intermediate filament networks in neurons. We have found that the RE1 silencing transcription factor (REST) plays a contributory role in the neuron-specific expression of the alpha-internexin, NF-H and NF-M genes. Chromatin immunoprecipitation and transient transfection experiments performed with catecholaminergic neuronal Cath a.-differentiated (CAD) cells and non-neuronal NIH3T3 cells demonstrated that REST repressed transcription of these genes in NIH3T3 cells by binding and recruiting mSin3A, CoREST, histone deacetylase (HDAC) 1 and MeCP2 to the RE1 sites in the intron-1 of alpha-internexin and the 5' flanking regions of NF-H and NF-M. No repression effect of the RE1 sites was observed in CAD cells, which express these neuronal genes but not REST. Treatment of NIH3T3 cells with trichostatin A, a HDAC inhibitor, relieved the REST-mediated repression and induced ectopic activation of alpha-internexin, NF-H and NF-M. The trichostatin A treatment did not affect the levels of REST occupancy but caused coordinated changes in acetylation and methylation of histones around the RE1 sites of these genes in NIH3T3 cells consistent with a transition from transcriptional repression to transcriptional activation. Thus, REST regulates expression of these neuronal genes, partly by a HDAC-dependent epigenetic mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700175PMC
http://dx.doi.org/10.1111/j.1471-4159.2009.06052.xDOI Listing

Publication Analysis

Top Keywords

nih3t3 cells
16
nf-h nf-m
12
re1 sites
12
re1 silencing
8
silencing transcription
8
transcription factor
8
neuron-specific expression
8
expression alpha-internexin
8
alpha-internexin neurofilament
8
alpha-internexin nf-h
8

Similar Publications

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

One of the potential risk factors of recombinant adeno-associated virus (rAAV)-based gene therapy is insertional mutagenesis, which has been associated with the development of hepatocellular carcinoma (HCC) in rAAV-treated neonatal mice. The objective of this study was to investigate if well-established in vitro cell transformation assays (CTA) in mouse cell lines can detect AAV2 or AAVdj-mediated cell transformation. Since AAV integration at the Rian locus in neonatal mice has been implicated in AAV-mediated HCC, an rAAV vector specifically targeting the mouse Rian locus and an additional rAAV vector previously shown to cause HCC in neonatal mice were both tested for the induction of cell transformation in NIH3T3 cells.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!