Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement.

J Neurochem

Centre for Neurotranslational Research, Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.

Published: July 2009

The heme oxygenases (HOs), responsible for the degradation of heme to biliverdin/bilirubin, free iron and CO, have been heavily implicated in mammalian CNS aging and disease. In normal brain, the expression of HO-2 is constitutive, abundant and fairly ubiquitous, whereas HO-1 mRNA and protein are confined to small populations of scattered neurons and neuroglia. In contradistinction to HO-2, the ho-1 gene (Hmox1) is exquisitely sensitive to induction by a wide range of pro-oxidant and other stressors. In Alzheimer disease and mild cognitive impairment, immunoreactive HO-1 protein is over-expressed in neurons and astrocytes of the cerebral cortex and hippocampus relative to age-matched, cognitively intact controls and co-localizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 is markedly over-expressed in astrocytes of the substantia nigra and decorates Lewy bodies in affected dopaminergic neurons. HMOX1 is also up-regulated in glial cells surrounding human cerebral infarcts, hemorrhages and contusions, within multiple sclerosis plaques, and in other degenerative and inflammatory human CNS disorders. Heme-derived free ferrous iron, CO, and biliverdin/bilirubin are biologically active substances that have been shown to either ameliorate or exacerbate neural injury contingent upon specific disease models employed, the intensity and duration of HO-1 expression and the nature of the prevailing redox microenvironment. In 'stressed' astroglia, HO-1 hyperactivity promotes mitochondrial sequestration of non-transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging-related neurodegenerative disorders. Glial HO-1 expression may also impact cell survival and neuroplasticity in these conditions by modulating brain sterol metabolism and proteosomal degradation of neurotoxic protein aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2009.06160.xDOI Listing

Publication Analysis

Top Keywords

alzheimer disease
8
parkinson disease
8
ho-1 expression
8
ho-1
7
disease
6
heme oxygenase-1
4
oxygenase-1 neurodegeneration
4
neurodegeneration expanding
4
expanding frontiers
4
frontiers engagement
4

Similar Publications

Objective: Neuropsychiatric symptoms (NPS) are considered diagnostic and prognostic indicators of dementia and are attributable to neurodegenerative processes. Little is known about the prognostic value of early NPS on executive functioning (EF) decline in Alzheimer's disease and related dementias (ADRD). We examined whether baseline NPS predicted the rate of executive function (EF) decline among older adults with ADRD.

View Article and Find Full Text PDF

Introduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.

View Article and Find Full Text PDF

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

RPS23RG1 inhibits SORT1-mediated lysosomal degradation of MDGA2 to protect against autism.

Theranostics

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.

Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.

View Article and Find Full Text PDF

Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!