Heterogeneity in phenotypic presentation of Autism spectrum disorders has been cited as one explanation for the difficulty in pinpointing specific genes involved in autism. Recent studies have attempted to reduce the "noise" in genetic and other biological data by reducing the phenotypic heterogeneity of the sample population. The current study employs multiple clustering algorithms on 123 item scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument of nearly 2,000 autistic individuals to identify subgroups of autistic probands with clinically relevant behavioral phenotypes in order to isolate more homogeneous groups of subjects for gene expression analyses. Our combined cluster analyses suggest optimal division of the autistic probands into four phenotypic clusters based on similarity of symptom severity across the 123 selected item scores. One cluster is characterized by severe language deficits, while another exhibits milder symptoms across the domains. A third group possesses a higher frequency of savant skills while the fourth group exhibited intermediate severity across all domains. Grouping autistic individuals by multivariate cluster analysis of ADI-R scores reveals meaningful phenotypes of subgroups within the autistic spectrum, which we show, in a related (accompanying) study, to be associated with distinct gene expression profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737479 | PMC |
http://dx.doi.org/10.1002/aur.72 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!