The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs.

Methods Find Exp Clin Pharmacol

Laboratory of Pharmacology, Faculty of Pharmacy, Coimbra University, Coimbra, Portugal.

Published: March 2009

The choice of appropriate animal models for the initial in vivo testing of potential anticonvulsant compounds is one of the most important steps in the successful search for new antiepileptic drugs. The purpose of this paper is to describe the most important aspects to take into account when performing the maximal electroshock seizure (MES) test in the routine laboratory screening of new antiepileptics: the conventional and threshold MES test experimental procedures, the factors affecting experimental data (laboratory conditions, administration vehicles and drug formulations, time after drug administration, and stimulus duration and site of stimulation) and the assessment of anticonvulsant activity are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1358/mf.2009.31.2.1338414DOI Listing

Publication Analysis

Top Keywords

maximal electroshock
8
electroshock seizure
8
seizure mes
8
antiepileptic drugs
8
mes test
8
mes model
4
model preclinical
4
preclinical assessment
4
assessment potential
4
potential antiepileptic
4

Similar Publications

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

Subchronic Treatment with CBZ Transiently Attenuates Its Anticonvulsant Activity in the Maximal Electroshock-Induced Seizure Test in Mice.

Int J Mol Sci

December 2024

Independent Experimental Neuropathophysiology Unit, Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland.

The objective of this study is to evaluate the anticonvulsant efficacy of carbamazepine (CBZ) following acute and chronic administration across four treatment protocols in a murine model of maximal electroshock-induced seizures. A single dose of the drug was utilized as a control. The neurotoxic effects were evaluated in the chimney test and the passive avoidance task.

View Article and Find Full Text PDF

This study aimed to design new hybrid compounds with imidazolidin-2,4-dione and morpholine rings as broad spectrum anticonvulsants. To achieve this goal, all compounds were evaluated in animal seizure models, namely the maximal electroshock (MES), the subcutaneous pentylenetetrazole (scPTZ), and selected in the 6 Hz (32 mA) tests. The most promising compound, 5-isopropyl-3-(morpholinomethyl)-5-phenylimidazolidine-2,4-dione (19), demonstrated broader anticonvulsant activity than phenytoin or levetiracetam, with ED50 of 26.

View Article and Find Full Text PDF

Introduction: Epilepsy remains a challenge, with one-third of patients experiencing refractory seizures despite current anti-seizure medications. The nitrergic system, which involves nitric oxide (NO) and NO synthase (NOS) enzymes, plays a complex role in seizure pathophysiology. Pentoxifylline (PTPh), an FDA-approved phosphodiesterase inhibitor, has anticonvulsant effects; however, its relationship with the pathway is unclear.

View Article and Find Full Text PDF

The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance.

Respir Physiol Neurobiol

January 2025

Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil; Physiological Science Department, Universidade Federal do Amazonas, Manaus, Brasil. Electronic address:

Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive technique with therapeutic potential, especially in respiratory muscle training (RMT) in pathological conditions such as chronic obstructive pulmonary disease and heart failure.

Objective: To evaluate the effect of bilateral cathodic tDCS on respiratory muscle strength and endurance in healthy young and elderly women.

Methods: An experimental, randomized study with 80 participants divided into young and old women, subdivided into intervention and sham control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!