Background: Influenza A viruses are of major concern for public health, causing worldwide epidemics associated with high morbidity and mortality. Vaccines are critical for protection against influenza, but given the recent emergence of new strains with pandemic potential, and some limitations of the current production systems, there is a need for new approaches for vaccine development.

Objective: To demonstrate the immunogenicity and protective efficacy of plant-produced influenza antigens. Method We engineered, using influenza A/Wyoming/3/03 (H3N2) as a model virus, the stem and globular domains of hemagglutinin (HA) produced in plants as fusions to a carrier protein and used purified antigens with and without adjuvant for ferret immunization.

Results: These plant-produced antigens were highly immunogenic and conferred complete protection against infection in the ferret challenge model. The addition of plant-produced neuraminidase was shown to enhance the immune response in ferrets.

Conclusions: Plants can be used as a production vehicle for vaccine development against influenza. Domains of HA can generate protective immune responses in ferrets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634330PMC
http://dx.doi.org/10.1111/j.1750-2659.2008.00037.xDOI Listing

Publication Analysis

Top Keywords

plant-produced influenza
8
influenza
5
plant-produced
4
influenza subunit
4
subunit vaccine
4
vaccine protects
4
protects ferrets
4
ferrets virus
4
virus challenge
4
challenge background
4

Similar Publications

A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in plants using self-replicating vector based on the potato virus X genome.

View Article and Find Full Text PDF

Infectious bronchitis (IB) is a highly contagious, acute respiratory disease in chickens, with a severe economic impact on poultry production globally. The rapid emergence of regional variants of this Gammacoronavirus warrants new vaccine approaches that are more humane and rapid to produce than the current embryonated chicken egg-based method used for IB variant vaccine propagation (chemically-inactivated whole viruses). The production of virus-like particles (VLPs) expressing the Spike (S) glycoprotein, the major antigen which induces neutralizing antibodies, has not been achieved in planta up until now.

View Article and Find Full Text PDF

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier.

View Article and Find Full Text PDF

The development of recombinant vaccines against SARS-CoV-2 and influenza A is an important task. The combination of the conserved influenza A antigen, the extracellular domain of the transmembrane protein M2 (M2e), and the receptor-binding domain of the SARS-CoV-2 spike glycoprotein (RBD) provides the opportunity to develop a bivalent vaccine against these infections. The fusion of antigens with bacterial flagellin, the ligand for Toll-like receptor 5 and potent mucosal adjuvant, may increase the immunogenicity of the candidate vaccines and enable intranasal immunization.

View Article and Find Full Text PDF

Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!