In ionic liquids composed of alkyl-substituted imidazolium cations and weakly coordinating anions such as bis(trifluoromethanesulfonyl)imide, (CF(3)SO(2))(2)N(-), the stretching vibrations of the imidazolium CH groups are shown to interact by Fermi resonance with the overtones and the combination of two in-plane ring vibrations. This new assignment, based on isotopic substitutions and anharmonic frequency calculations for gas phase cations, implies that these imidazolium cations do not establish any strong and directional C-H...anion hydrogen bond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp903160rDOI Listing

Publication Analysis

Top Keywords

stretching vibrations
8
ionic liquids
8
imidazolium cations
8
interpretation stretching
4
vibrations imidazolium-based
4
imidazolium-based ionic
4
liquids ionic
4
liquids composed
4
composed alkyl-substituted
4
alkyl-substituted imidazolium
4

Similar Publications

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

Interstellar spectroscopic detection of HC(S)NC and DC(S)NC.

J Chem Phys

January 2025

Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA.

The detection of HC(S)CN in TMC-1 suggests that HC(S)NC may also exist. To aid in its possible detection, HC(S)NC and its deuterated isotopologue DC(S)NC were investigated via high-level ab initio methods, specifically CCSD(T) and CCSD(T)-F12. By utilizing multidimensional potential energy surfaces derived from explicitly correlated coupled-cluster calculations, we analyzed their geometrical parameters, vibrational frequencies, rotational constants, and a comprehensive set of spectroscopic constants generated via the vibrational second-order perturbation theory, vibrational self-consistent field, and vibrational configuration interaction theory(VCI) approaches.

View Article and Find Full Text PDF

We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!