The fluorescence spectra of triphenylene (TP) and 2,3,6,7,10,11-hexamethoxy-triphenylene (HMTP) are measured in glass matrices, and the vibronic structure associated with the electronic spectra is simulated with the help of quantum chemically computed molecular parameters. Franck-Condon (FC) and Herzberg-Teller (HT) mechanisms are included. For excited-state calculations, both configuration interaction with single excitations (CIS) and time-dependent density functional theory (TDDFT) are employed. It is shown that the FC activity is associated with modes of similar shape and frequency in both molecules, while the HT-induced false origins with the largest activity are associated with rather different frequencies and normal coordinates as a result of the mixing and energy lowering of the low-lying allowed excited states in HMTP. The increased HT activity explains the reduced S(1) state lifetime in the substituted TP, in turn driven by the excited-state rearrangement occurring upon substitution of the TP core.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp9005247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!