Poly(methyl methacrylate) (PMMA) based nanocomposites were synthesized by melt intercalation technique using organoclays (Cloisite 30B and Cloisite 20A) as fillers. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to determine the dispersion and the morphology of the nanocomposites obtained. Thermomechanical tests including tensile test and dynamic mechanical analysis (DMA) were used to evaluate the Young's modulus, storage modulus and the glass transition temperature. Thermogravimetric analysis (TGA) is conducted on the poly(methyl methacrylate) based nanocomposites to determine their thermal stability. The effect of filler content is studied by considering samples with filler contents varying from 1 to 5 wt%. The mechanical properties obtained from the tensile tests show an increase in the Young's modulus and a decrease in the strain to failure as function of the nanoclays concentration. Relative to the pure poly(methyl methacrylate), the dynamic mechanical analyses show an increase in the storage modulus and the glass transition temperature of both nanocomposites. The thermogravimetric analysis shows an increase of the thermal stability of both nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2009.0012923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!