Phase transformations in Sr0.8Ba0.2CoO2.5 brownmillerite: correlation between structure and transport properties.

Dalton Trans

Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.

Published: June 2009

An oxygen-defective perovskite oxide with the title composition has been prepared by soft-chemistry procedures followed by quenching in liquid N(2) from 900 degrees C. This polycrystalline sample has been characterized by temperature-dependent X-ray (XRPD) and neutron powder diffraction (NPD), thermal analysis, electrical conductivity and thermal expansion measurements, in order to correlate the physico-chemical properties and the structural features. At room temperature (RT), the sample adopts an orthorhombic brownmillerite-like structure defined in the Ibm2 space group, containing layers of CoO(6) octahedra alternating with layers of CoO(4) tetrahedra along the b axis. This phase is stable between room temperature and 350 degrees C, where a topotactic intake of oxygen increases the coordination of the tetrahedra to octahedral, with change of the space group to Pnma, as unveiled by the in-situ NPD study. This intermediate phase has been identified for the first time. At 653 degrees C, this phase irreversibly transforms to a hexagonal "H" phase. At 920 degrees C, a cubic perovskite phase "C" is identified, which is transformed again, upon cooling, into the "H" phase at 774 degrees C. The features of the very distinct coordination polyhedra present in the different polymorphs have been correlated with the transport properties. There is a substantial increment of the conductivity at 350 degrees C, upon the oxygen insertion process, concomitant with a contraction of the axial Co-O bonds of the octahedral CoO(6) units and the transformation of the tetrahedra into octahedra, also characterized by dilatometry measurements. The dramatic reduction of the conductivity above 700 degrees C is connected with the transformation to the "H" polymorph, with a complete oxygen sublattice and a face-sharing octahedral framework with a poor 1D electronic conduction. In Sr(0.8)Ba(0.2)CoO(2.5), the plateau of stability of the 3C-like structure, with useful transport properties in the range of sigma = 50-60 S cm(-1), is extended up to 650 degrees C with respect to the pristine SrCoO(2.5). By heating above 900 degrees C, the conductivity abruptly rises when the sample is entering the cubic perovskite region, characterized by a three-dimensional vertex-sharing network of CoO(6) octahedra. The total conductivity displays a maximum value of 75 S cm(-1) at 900 degrees C, which increases during the cooling run, exhibiting a typical metallic behaviour. Moreover, in this cubic phase, the oxygen atoms show large thermal factors of 5.5 A(2), suggesting a considerable mobility and a mixed conductor behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b819369jDOI Listing

Publication Analysis

Top Keywords

transport properties
12
900 degrees
12
degrees
10
phase
8
structure transport
8
room temperature
8
space group
8
coo6 octahedra
8
350 degrees
8
"h" phase
8

Similar Publications

The application of aptamers in the repair of bone, nerve, and vascular tissues.

J Mater Chem B

January 2025

Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.

Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.

View Article and Find Full Text PDF

Djulis ( Koidz.) possesses various biological activities, including anti-oxidant, anti-hyperglycemic, anti-aging and hepatoprotective properties. Although djulis husk is typically considered agricultural waste, there is value in exploring ways to utilize it effectively.

View Article and Find Full Text PDF

Cholesterol aggregation in dendritic cells (DCs) triggers an inflammatory response and accelerates the development of atherosclerosis (AS). Resveratrol (RES), a natural compound with anti-inflammatory and cholesterol metabolism regulatory properties, has been shown to influence the maturation and inflammatory functions of DCs. However, its relationship with cholesterol metabolism remains unclear.

View Article and Find Full Text PDF

The ability of nanofluids to improve heat transmission in thermal systems is well established. This work investigates the three-dimensional theoretical behavior of Darcy-Forchheimer nanofluids in tilted magnetohydrodynamics. In this study, the Soret effect, micro-motile organisms, thermophoresis, and heat radiation are also considered.

View Article and Find Full Text PDF

Water-in-salt electrolytes provide an expanded electrochemical potential window, thus enabling a wide range of battery chemistries based on readily available salts and water. This study introduces a binary salt approach for achieving high K concentration with a tunable solvation sphere composed of acetate (Ac) and trifluoromethane sulfonate (OTf) anions, and water. Combining the hydrophilic low-cost potassium acetate with hydrophobic potassium trifluoromethane sulfonate salts, 36 molal liquid electrolyte, K(Ac)(OTf)·1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!