Auditory brainstem implants (ABI) have been used in neurofibromatosis type 2 (NF2) patients in an attempt to restore hearing sensation, with limited clinical success. Factors associated with poor clinical outcomes for NF2 ABI patients include larger tumour size, longer duration of hearing loss, and brainstem distortion and/or deformation caused by tumours that compress the brainstem. The present study investigated changes in tuning properties of inferior colliculus (IC) neurons following compression of the contralateral cochlear nucleus (CN). The left CN in adult rats (n = 8) was exposed and a 32-channel acute recording probe inserted along the tonotopic gradient of the right IC. In 4 animals, an ethylene vinyl acetate bead was applied to the exposed CN. Three recordings were made corresponding to T(1) = 0 min (before compression), T(2) = 45 min (during compression) and T(3) = 225 min (following bead removal/recovery). Recordings consisted of a response area protocol using pure tones of various frequencies and intensities (1-44 kHz; 10-70 dB SPL) to determine the characteristic frequency for each probe site. Compression of the CN led to sharpened tuning curves, decreased spike rate, and increased threshold and characteristic frequency in the IC. Reversal of compression enabled these variables, excluding threshold, to recover to baseline. NF2 patients may have poorer ABI performance due to damage to the physical structure of the CN, resulting in alterations to the tonotopic organisation of the auditory pathway which may complicate ABI implantation and activation.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000218359DOI Listing

Publication Analysis

Top Keywords

cochlear nucleus
8
tuning properties
8
properties inferior
8
inferior colliculus
8
colliculus neurons
8
nf2 patients
8
min compression
8
characteristic frequency
8
compression
6
acute cochlear
4

Similar Publications

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Loss of neuronal activity facilitates surface accumulation of p75NTR and cell death in avian cochlear nucleus.

Neurosci Res

January 2025

Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan. Electronic address:

Sensorineural hearing loss causes cell death in central auditory neurons, but molecular mechanisms of triggering this process are not fully understood. We report here that loss of afferent activity promotes cell death by facilitating proBDNF-p75NTR signals in cochlear nucleus of chicks around hatch. RNA-seq analyses revealed up-regulation of genes related to proBDNF-p75NTR-JNK signals as well as apoptosis at the nucleus within 24hours after unilateral cochlea deprivation.

View Article and Find Full Text PDF

Objective: To provide evidence to use an extended frequency pure tone average to screen for cochlear implant evaluation candidates as recommended by the American Cochlear Implant Alliance. Additionally, to determine whether traditional low frequency, high or low frequency, high frequency, or extended frequency pure tone average most accurately predicts cochlear implant candidates based on speech perception scores from aided AzBio sentence testing or aided consonant-nucleus-consonant (CNC) testing.

Method: Adults from a tertiary care center who completed aided sentence testing during cochlear implant evaluation between 2014 and 2024 were assessed.

View Article and Find Full Text PDF

Background: The intraoperative measurements are essential steps in cochlear implant (CI) surgery for confirming correct electrode placement.

Objectives: To examine the intraoperative impedance and electrically evoked action potential (ECAP) measurement results of cochlear implant (CI) users with normal cochlear anatomy (NCA) and to compare them with CI users with inner ear malformations (IEM).

Material And Methods: This retrospective study included intraoperative data of 300 ears from 258 individuals using Medel and Cochlear (Nucleus) CI devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!