Cryptococcus neoformans was first described as a human fungal pathogen more than a century ago. One aspect of the C. neoformans infectious life cycle that has been the subject of earnest debate is whether the spores are pathogenic. Despite much speculation, no direct evidence has been presented to resolve this outstanding question. We present evidence that C. neoformans spores are pathogenic in a mouse intranasal inhalation model of infection. In addition, we provide mechanistic insights into spore-host interactions. We found that C. neoformans spores were phagocytosed by alveolar macrophages via interactions between fungal beta-(1,3)-glucan and the host receptors Dectin-1 and CD11b. Moreover, we discovered an important link between spore survival and macrophage activation state: intracellular spores were susceptible to reactive oxygen-nitrogen species. We anticipate these results will serve as the basis for a model to further investigate the pathogenic implications of infections caused by fungal spores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715683PMC
http://dx.doi.org/10.1128/IAI.00334-09DOI Listing

Publication Analysis

Top Keywords

human fungal
8
fungal pathogen
8
cryptococcus neoformans
8
spores pathogenic
8
neoformans spores
8
spores
6
neoformans
5
elucidating pathogenesis
4
pathogenesis spores
4
spores human
4

Similar Publications

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!