Objectives: We attempted to evaluate whether cortical activation resulting from hand movements is changed by transcranial direct current stimulation (tDCS) applied on the primary motor cortex for the hand in the human brain, using functional MRI (fMRI).
Methods: Fourteen normal subjects were recruited; subjects were randomly assigned to either the tDCS group (n=7) or the sham group (n=7). fMRI was performed with hand grasp-release movements at 1Hz before and after 20 min of intervention (the tDCS group: anodal tDCS, the sham group: sham stimulation).
Results: The activation of the tDCS underlying primary sensorimotor cortex (SM1) was significantly increased in the tDCS group (p<0.05). By contrast, the SM1 was significantly decreased in the sham group in terms of the voxel count and intensity (p<0.05). No subjects complained of any adverse symptoms or signs.
Conclusion: We demonstrated that anodal tDCS increased the cortical excitability of the underlying motor cortex in the human brain. It seems that tDCS is an effective modality to modulate brain function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2009.05.037 | DOI Listing |
Headache
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.
Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.
Eur Psychiatry
January 2025
Department of Psychiatry, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Background: Transcranial direct current stimulation (tDCS) is a promising treatment for major depressive disorder (MDD). This study evaluated its antidepressant and cognitive effects as a safe, effective, home-based therapy for MDD.
Methods: This double-blind, sham-controlled, randomized trial divided participants into low-intensity (1 mA, = 47), high-intensity (2 mA, = 49), and sham ( = 45) groups, receiving 42 daily tDCS sessions, including weekends and holidays, targeting the dorsolateral prefrontal cortex for 30 minutes.
Biol Psychiatry Cogn Neurosci Neuroimaging
January 2025
Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.
Objective: Conduct disorder (CD) is associated with deficits in the use of punishment for reinforcement learning (RL) and subsequent decision-making, contributing to reckless, antisocial, and aggressive behaviors. Here, we used functional magnetic resonance imaging (fMRI) to examine whether differences in behavioral learning rates derived from computational modeling, particularly for punishment, are reflected in aberrant neural responses in youths with CD compared to typically-developing controls (TDCs).
Methods: 75 youths with CD and 99 TDCs (9-18 years, 47% girls) performed a probabilistic RL task with punishment, reward, and neutral contingencies.
Mult Scler Relat Disord
December 2024
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy. Electronic address:
Background: Multiple sclerosis (MS) is a demyelinating disease characterized by balance and gait impairment, fatigue, anxiety, depression, and diminished quality of life. Transcranial direct current stimulation (tDCS) has emerged as an effective intervention for managing these symptoms.
Objective: This study aims to investigate the efficacy of remotely supervised tDCS (RS-tDCS) applied to the left dorsolateral prefrontal cortex, in conjunction with a telerehabilitation (TR) program, on motor (balance and gait), cognitive (executive functions), and participation outcomes (fatigue, anxiety, depression, and quality of life) in persons with MS (pwMS).
Sci Rep
January 2025
Department of Public Health and Exercise Science, Appalachian State University, Boone, NC, USA.
The study aimed to assess the feasibility and potential efficacy of a non-motor intervention utilizing motor imagery (MI) and transcranial direct current stimulation (tDCS) to enhance motor function. The research involved a double-blind, randomized, controlled trial with three groups: MIActive, MISham, and Control. Participants engaged in a cognitively demanding obstacle course, with time and prefrontal activation (ΔO2Hb and ΔHHb) measured across three-time points (Baseline, Post-test, 1-week follow-up).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!