Background & Aims: NHE3 is a target of inhibition by proinflammatory cytokines and pathogenic bacteria, an event contributing to diarrhea in infectious and idiopathic colitis. In mice, NHE3 deficiency leads to mild diarrhea, increased intestinal expression of interferon (IFN)-gamma, and distal colitis, suggesting its role in epithelial barrier homeostasis. Our aim was to investigate the role of NHE3 in maintaining mucosal integrity.

Methods: Control or dextran sulfate sodium (DSS)-treated, 6- to 8-week-old wild-type (WT) and NHE3(-/-) mice were used for the experiments. Small intestines were dissected for further analysis.

Results: NHE3(-/-) mice have elevated numbers of CD8alpha(+) T and natural killer cells in the intraepithelial lymphocytes and lamina propria lymphocytes compartments, representing the source of IFN-gamma. NHE3(-/-) mice display alterations in epithelial gene and protein expression patterns that predispose them to a high susceptibility to DSS, with accelerated mortality resulting from intestinal bleeding, hypovolemic shock, and sepsis, even at a very low DSS concentration. Microarray analysis and intestinal hemorrhage indicate that NHE3 deficiency predisposes mice to DSS-induced small intestinal injury, a segment never reported as affected by DSS, and demonstrate major differences in the colonic response to DSS challenge in WT and NHE3(-/-) mice. In NHE3(-/-) mice, broad-spectrum oral antibiotics or anti-asialo GM1 antibodies reduce the expression of IFN-gamma and iNOS to basal levels and delay but do not prevent severe mortality in response to DSS treatment.

Conclusions: These results suggest that NHE3 participates in mucosal responses to epithelial damage, acting as a modifier gene determining the extent of the gut inflammatory responses in the face of intestinal injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454522PMC
http://dx.doi.org/10.1053/j.gastro.2009.05.043DOI Listing

Publication Analysis

Top Keywords

nhe3-/- mice
20
mice
8
nhe3 deficiency
8
intestinal injury
8
response dss
8
nhe3
6
intestinal
5
nhe3-/-
5
dss
5
changes mucosal
4

Similar Publications

Dipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na /H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.

View Article and Find Full Text PDF

Regulation of NHE3 subcellular localization in epididymal principal cells: pH, cyclic adenosine 3,5 monophosphate (cAMP), and adenosine signaling.

Andrology

December 2024

Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Centre Hospitalier Universitaire de Québec - Research Centre, and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle - Université Laval, Québec, QC, Canada.

Introduction: The epididymis creates an optimal acidic luminal environment for sperm maturation and storage. In epididymal principal cells (PCs), proton secretion is activated by the accumulation of the sodium-proton exchanger type 3, NHE3 (SLC9A3), in apical stereocilia. PCs also secrete ATP, which is hydrolyzed into adenosine by ectonucleotidases.

View Article and Find Full Text PDF

The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3 mice).

View Article and Find Full Text PDF

Dietary Cinnamaldehyde Activation of TRPA1 Antagonizes High-Salt-Induced Hypertension Through Restoring Renal Tubular Mitochondrial Dysfunction.

Am J Hypertens

August 2024

Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China.

Background: The renal proximal tubule (RPT) plays a pivotal role in regulating sodium reabsorption and thus blood pressure (BP). Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigate high-salt intake-induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function.

View Article and Find Full Text PDF

Objectives: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K + -induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown.

Methods: In this study, we examined the impact of high-K + intake on renal Na + /K + transport by determining the expression of major apical Na + transporters, diuretics responses (as a proxy for specific Na + transporter function), urinary Na + /K + excretion, and plasma Na + /K + concentrations in db/db mice, a model of type 2 diabetes mellitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!