The cyclobutane pyrimidine dimer (CPD) is one of the major classes of cytotoxic and carcinogenic DNA photoproducts induced by UV light. Hydrogen exchange rates of the imino protons were measured for various CPD-containing DNA duplexes to better understand the mechanism for CPD recognition by XPC-hHR23B. The results here revealed that double T.G mismatches in a CPD lesion significantly destabilized six consecutive base pairs compared to other DNA duplexes. This flexibility in a DNA duplex caused at the CPD lesions with double T.G mismatches might be the key factor for damage recognition by XPC-hHR23B.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2009.05.015DOI Listing

Publication Analysis

Top Keywords

cyclobutane pyrimidine
8
pyrimidine dimer
8
dna duplexes
8
recognition xpc-hhr23b
8
double mismatches
8
dna
5
thermodynamics kinetics
4
kinetics base
4
base pair
4
pair opening
4

Similar Publications

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Cyclobutane pyrimidine dimers (CPDs) are formed in DNA following exposure to ultraviolet (UV) light and are mutagenic unless repaired by nucleotide excision repair (NER). It is known that CPD repair rates vary in different genome regions due to transcription-coupled NER and differences in chromatin accessibility; however, the impact of regional chromatin organization on CPD formation remains unclear. Furthermore, nucleosomes are known to modulate UV damage and repair activity, but how these damage and repair patterns are affected by the overarching chromatin domains in which these nucleosomes are located is not understood.

View Article and Find Full Text PDF

Transcription factors, nucleotide excision repair, and cancer: A review of molecular interplay.

Int J Biochem Cell Biol

December 2024

Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Türkiye. Electronic address:

Bulky DNA adducts are mostly formed by external factors such as UV irradiation, smoking or treatment with DNA crosslinking agents. If such DNA adducts are not removed by nucleotide excision repair, they can lead to formation of driver mutations that contribute to cancer formation. Transcription factors (TFs) may critically affect both DNA adduct formation and repair efficiency at the binding site to DNA.

View Article and Find Full Text PDF

Energy metabolism rewiring following acute UVB irradiation is largely dependent on nuclear DNA damage.

Free Radic Biol Med

December 2024

Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France. Electronic address:

Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR.

View Article and Find Full Text PDF

Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation.

J Photochem Photobiol B

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil.

In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!