Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction of an amphiphilic, 40-amino acid beta-amyloid (Abeta) peptide with liposomal membranes as a function of sterol mole fraction (X(sterol)) was studied based on the fluorescence anisotropy of a site-specific membrane sterol probe, dehydroergosterol (DHE), and fluorescence resonance energy transfer (FRET) from the native Tyr-10 residue of Abeta to DHE. Without Abeta, peaks or kinks in the DHE anisotropy versus X(sterol) plot were detected at X(sterol) approximately 0.25, 0.33, and 0.53. Monomeric Abeta preserved these peaks/kinks, but oligomeric Abeta suppressed them and created a new DHE anisotropy peak at X(sterol) approximately 0.38. The above critical X(sterol) values coincide favorably with the superlattice compositions predicted by the cholesterol superlattice model, suggesting that membrane cholesterol tends to adopt a regular lateral arrangement, or domain formation, in the lipid bilayers. For FRET, a peak was also detected at X(sterol) approximately 0.38 for both monomeric and oligomeric Abeta, implying increased penetration of Abeta into the lipid bilayer at this sterol mole fraction. We conclude that the interaction of Abeta with membranes is affected by the lateral organization of cholesterol, and hypothesize that the formation of an oligomeric Abeta/cholesterol domain complex may be linked to the toxicity of Abeta in neuronal membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712157 | PMC |
http://dx.doi.org/10.1016/j.bpj.2009.02.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!