A nitrile-derived amino acid, Phe(CN), has been used as an internal spectroscopic probe to study the binding of an inhalational anesthetic to a model membrane protein. The infrared spectra from experiment showed a blue-shift of the nitrile vibrational frequency in the presence of the anesthetic halothane. To interpret the infrared results and explore the nature of the interaction between halothane and the model protein, all-atom molecular dynamics (MD) simulations have been used to probe the structural and dynamic properties of the protein in the presence and absence of one halothane molecule. The frequency shift analyzed from MD simulations agrees well with the experimental infrared results. Decomposition of the forces acting on the nitrile probes demonstrates an indirect impact on the probes from halothane, namely a change of the protein's electrostatic local environment around the probes induced by halothane. Although the halothane remains localized within the designed hydrophobic binding cavity, it undergoes a significant amount of translational and rotational motion, modulated by the interaction of the trifluorine end of halothane with backbone hydrogens of the residues forming the cavity. This dominant interaction between halothane and backbone hydrogens outweighs the direct interaction between halothane and the nitrile groups, making it a good "spectator" probe of the halothane-protein interaction. These MD simulations provide insight into action of anesthetic molecules on the model membrane protein, and also support the further development of nitrile-labeled amino acids as spectroscopic probes within the designed binding cavity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712203PMC
http://dx.doi.org/10.1016/j.bpj.2009.01.054DOI Listing

Publication Analysis

Top Keywords

interaction halothane
12
halothane
10
anesthetic halothane
8
halothane model
8
molecular dynamics
8
spectroscopic probe
8
model membrane
8
membrane protein
8
binding cavity
8
halothane backbone
8

Similar Publications

Smoke intoxication is a central event in mass burn incidents, and toxic smoke acts at different levels of the body, blocking breathing and oxygenation. The majority of these patients require early induction of anesthesia to preserve vital functions. We studied the influence of hemoglobin (HMG) and myoglobin (MGB) blockade by hydrochloric acid (HCl) in an interaction model with gaseous anesthetics using molecular docking techniques.

View Article and Find Full Text PDF

Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin.

View Article and Find Full Text PDF

Silylated-acetylated cyclodextrin (CD) derivatives have recently been investigated, via nuclear magnetic resonance (NMR) spectroscopy, as chiral sensors for substrates that are endowed and devoid of fluorine atoms, and the importance of Si-F interaction in the discrimination phenomena has been assessed. Here, the contributions of both superficial interactions and inclusion processes were further evaluated by extending the records to other chiral fluorinated substrates of interest for pharmaceutical applications. Non-equivalences were measured for both the H and F resonances in equimolar mixtures with the CDs; the promising results also supported the use of chiral sensors in -stoichiometric amounts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!