AI Article Synopsis

  • A hybrid QM/MM method was used to analyze the Raman spectra of the PCB cofactor in the cyanobacterial phytochrome Cph1, comparing two models based on different protonation sites of His(260).
  • The results showed that the M-HSD model provided a better match to experimental resonance Raman spectra, suggesting it accurately represents the chromophore-binding site.
  • The study highlighted how the protein environment alters the PCB geometry, affecting spectral interpretation, particularly the stretching mode of the methine bridge, leading to important insights into chromophore-protein interactions.

Article Abstract

A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His(260) in the chromophore-binding pocket such that either the delta-nitrogen (M-HSD) or the epsilon-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His(260) with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712200PMC
http://dx.doi.org/10.1016/j.bpj.2009.02.029DOI Listing

Publication Analysis

Top Keywords

raman spectra
12
experimental spectra
12
cyanobacterial phytochrome
8
phytochrome cph1
8
qm/mm calculations
8
pcb cofactor
8
crystal structure
8
structure models
8
chromophore-binding pocket
8
methine bridge
8

Similar Publications

Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule.

J Am Chem Soc

December 2024

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.

View Article and Find Full Text PDF

We report on the development of a multimodal spectroscopy system, combining diffuse reflectance spectroscopy (DRS) and spatially offset Raman spectroscopy (SORS). A fiber optic probe was designed with spatially offset source-detector fibers to collect subsurface measurements for each modality, as well as ball lens-coupled fibers for superficial measurements. The system acquires DRS, zero-offset Raman spectroscopy (RS) and SORS with good signal-to-noise ratio.

View Article and Find Full Text PDF

Convolutional neural network-assisted Raman spectroscopy for high-precision diagnosis of glioblastoma.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Neurosurgery and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, Institute of Artificial Intelligence, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361102, China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China. Electronic address:

Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The current gold standard for diagnosing GBM during surgery is pathology, but it is time-consuming.

View Article and Find Full Text PDF

Asymmetric Rh-O-Co bridge sites enable superior bifunctional catalysis for hydrazine-assisted hydrogen production.

Chem Sci

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China

Hydrazine-assisted water splitting is a promising strategy for energy-efficient hydrogen production, yet challenges remain in developing effective catalysts that can concurrently catalyze both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in acidic media. Herein, we report an effective bifunctional catalyst consisting of Rh clusters anchored on CoO branched nanosheets (Rh-CoO BNSs) synthesized an innovative arginine-induced strategy. The Rh-CoO BNSs exhibit unique Rh-O-Co interfacial sites that facilitate charge redistribution between Rh clusters and the CoO substrate, thereby optimizing their valence electronic structures.

View Article and Find Full Text PDF

This article studies the synthesis, as well as the structural, vibrational, and optical properties of Eu-doped ZnO quantum dots (QDs) and investigates the energy transfer mechanism from the ZnO host to Eu ions using Reisfeld's approximation. Eu-doped ZnO QDs at varying concentrations (0-7%) were successfully prepared using a wet chemical method. The successful doping of Eu ions into the ZnO host lattice, as well as the composition and valence states of the elements present in the sample, were confirmed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!