Whole gene expression analysis through microarray technologies revolutionized the manner of identifying changes in biological events and complex diseases, such as cardiovascular settings. These new methodologies may scan up to 35 000 transcripts at once rather than screening a small amount of genes one at a time. The ability of microarrays to provide a broad insight into the disease process directly within the tissues provides a unique insight into the intracellular perturbations of the cell organization and function and sheds an entirely unique new perspective on the heart failure process. Commonalities and differences at the molecular level will identify critical pathways of pathogenesis, and response to therapy, or both: indeed, gene expression profiling holds tremendous promise for classifying clinical phenotypes, developing prognostic predictors and, most importantly, providing novel unbiased insights into the mechanisms underlying heart disease and, eventually, novel causative genes. On the contrary, established proteomic technologies, together with the new alternative strategies currently under evaluation (i.e. metabolomics), are now making possible the translation of data obtained on the bench to the daily clinical routine with the discovery of new diagnostic/prognostic biomarkers (such as troponin for ACS and BNP for congestive heart failure) and the identification of new therapeutic approaches for combating heart diseases. Finally, genomic studies (including transcriptomics) together with proteomics should not represent a challenge for who is going to win the final battle, but rather they should provide a setting in which together and in a complementary fashion the final fight against heart disease can be won.

Download full-text PDF

Source
http://dx.doi.org/10.2459/jcm.0b013e328324e972DOI Listing

Publication Analysis

Top Keywords

gene expression
8
heart failure
8
heart disease
8
heart
5
transcriptomic proteomic
4
proteomic analysis
4
analysis cardiovascular
4
cardiovascular setting
4
setting unravelling
4
unravelling disease?
4

Similar Publications

Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

In this study, we aimed to uncover novel biomarkers in acute myeloid leukemia (AML) that could serve as prognostic indicators or therapeutic targets. We analyzed AML microarray datasets from the Gene Expression Omnibus (GEO) repository, identifying key differentially expressed genes (DEGs) through the robust rank aggregation (RRA) approach. The functions of these DEGs were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.

View Article and Find Full Text PDF

Unfolded protein response during the progression of colorectal carcinogenesis.

Acta Cir Bras

January 2025

Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.

Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.

Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!