Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand-binding energies of [Ag(L)(n)](+) (L=SO(2), CH(2)Cl(2); n=1, 2) and solid-state enthalpies obtained from Born-Fajans-Haber cycles by using the volume-based thermodynamics (VBT) approach. Bonding analysis (VB, NBO, MO) of [Ag(L)(n)](+) suggests that these complexes are almost completely stabilized by electrostatic interaction, that is, monopole-dipole interaction, with almost no covalent contribution by electron donation from the ligand orbitals into the vacant 5s orbital of Ag(+). All experimental findings and theoretical considerations demonstrate that SO(2) is less covalently bound to Ag(+) than CH(2)Cl(2) and support the thesis that SO(2) is a polar but non-coordinating solvent towards Ag(+).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200802498DOI Listing

Publication Analysis

Top Keywords

weakly coordinating
16
so2
12
complexes weakly
8
coordinating solvents
8
so2 ch2cl2
8
[agoso][al{occf33}4] [agoso2/2][sbf6]
8
[agoso2/2][sbf6] [agch2cl22][sbf6]
8
special techniques
8
techniques low
8
low temperatures
8

Similar Publications

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Background: Musculoskeletal pain frequently accompanies the development of mobility disability and falls in old age. To better understand this, we aimed to quantify the impact of different pain measures-recalled pain and movement-evoked pain-on 400-meter walk and stair climb time in older adults participating in the Study of Muscle, Mobility and Aging (SOMMA).

Methods: In SOMMA (N=879, age=76.

View Article and Find Full Text PDF

A Crystalline Unsupported Phosphagallene and Phosphaindene.

J Am Chem Soc

December 2024

Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States.

The synthesis and isolation of TerP═GaTer and TerP═InTer (Ter = 2,6-Dipp-CH; Dipp = 2,6-diisopropylphenyl) is reported. These compounds feature unsupported P═Ga and P═In double bonds and two-coordinate triel element centers. Key to the stabilization of such compounds is the steric bulk of the terphenyl substituents, which serve to shield the highly reactive P═E bonds (E = Ga, In) and prevent further aggregation.

View Article and Find Full Text PDF

Nonflammable Electrolytes With Weakly Lithiophilic Diluents for Stabilizing Silicon-Based Lithium-Ion Batteries.

Small

December 2024

State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China.

Stabilization of the silicon-based anode in lithium-ion batteries heavily depends on electrolyte engineering. However, despite the effectiveness of localized high-concentration electrolytes in enhancing battery life, most studies have focused on solvents and lithium salts, highlighting the urgent need for advanced diluents tailored to silicon-based anodes. Here, a nonflammable electrolyte with a weakly lithiophilic diluent is reported by introducing methyl perfluorobutyl ether into a mixture of lithium bis(fluorosulfonyl)imide and 1,2-dimethoxyethane, for the enhancement of silicon-based anode.

View Article and Find Full Text PDF

Background: The relationship between the extent and severity of stress-induced ischemia and the extent and severity of anatomic coronary artery disease (CAD) in patients with obstructive CAD is multifactorial and includes the intensity of stress achieved, type of testing used, presence and extent of prior infarction, collateral blood flow, plaque characteristics, microvascular disease, coronary vasomotor tone, and genetic factors. Among chronic coronary disease participants with site-determined moderate or severe ischemia, we investigated associations between ischemia severity on stress testing and the extent of CAD on coronary computed tomography angiography.

Methods: Clinically indicated stress testing included nuclear imaging, echocardiography, cardiac magnetic resonance imaging, or nonimaging exercise tolerance test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!