In order to improve filler dispersion and phase compatibility between poly(D,L-lactide) (PDLLA) and inorganic bioactive glass (BG) particles, and to enhance the mechanical properties of PDLLA/BG composites, the silane coupling agent 3-glycidoxypropyltrimethoxysilane (KH570) was used to modify the surface of BG particles (represented by KBG). The structure and properties of PDLLA/BG and PDLLA/KBG composites were investigated by mechanical property testing and scanning electron microscopy (SEM). This study demonstrated that the Guth and Gold models can be combined to predict the Young's modulus of the composites. The Pukanszky modulus showed that the interaction parameter B of PDLLA/KBG composites was higher than that of the PDLLA/BG, which indicates that there is a higher interfacial interaction between the PDLLA and KBG. The composites were incubated in simulated body fluid (SBF) at 37 degrees C to study the in vitro degradation and bioactivity of the composites and to detect bone-like apatite formation on their surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-009-3772-7DOI Listing

Publication Analysis

Top Keywords

bioactive glass
8
properties pdlla/bg
8
pdlla/kbg composites
8
composites
7
preparation characterization
4
characterization biodegradable
4
biodegradable polydl-lactide
4
polydl-lactide surface-modified
4
surface-modified bioactive
4
glass composites
4

Similar Publications

Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.

Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.

View Article and Find Full Text PDF

Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.

View Article and Find Full Text PDF

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!