Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast-acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1360/01yc0295 | DOI Listing |
Sci China C Life Sci
October 2003
Shanghai Institutes for Biology Sciences, Chinese Academy of Sciences, China.
Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast-acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively.
View Article and Find Full Text PDFProtein Eng
November 2000
State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The residues A21Asn, B12Val, B16Tyr, B24Phe, B25Phe, B26Tyr and B27Thr, buried in the dimer of insulin, were identified by means of alanine-scanning mutagenesis. The receptor binding activity, in vivo biological potency and self-association properties of the seven single alanine human insulin mutants were determined. Four of the seven single alanine mutants, [B12Ala]human insulin, [B16Ala]human insulin, [B24Ala]human insulin and [B26Ala]human insulin, are monomeric insulin, which indicates that B12Val, B16Tyr, B24Phe and B26Tyr are crucial for the formation of insulin dimer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!