Is the physical decay correction of the (18)F-FDG input function in dynamic PET imaging justified?

J Nucl Med Technol

Service de Médecine Nucléaire, CHU de Bordeaux, Pessac, France.

Published: June 2009

Unlabelled: In this theoretic note, the rationale for the physical decay correction of the (18)F-FDG input function in dynamic PET is investigated, using the Patlak equation as an example.

Methods: The Patlak equation conventionally obtained when correcting the (18)F-FDG input function and correcting the tissue activity measurement for (18)F physical decay can also be derived from a 2-compartment analysis that does not conceptually involve any physical decay correction of the (18)F-FDG input function but accounts only for the physical decay of the trapped tracer.

Results: We demonstrate that exactly the same equation can be derived from the 2 conceptual approaches, and hence each approach yields the correct uptake rate of the tracer.

Conclusion: No advantage in (18)F-FDG dynamic PET can be expected from using the concept of uncorrected data rather than that of decay-corrected data. Nevertheless, conceptually, we show that correcting the (18)F-FDG input function for radioactive decay cannot be justified and that this correction is not compatible with the calculation of patient radiation dose.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnmt.108.060350DOI Listing

Publication Analysis

Top Keywords

physical decay
20
18f-fdg input
20
input function
20
decay correction
12
correction 18f-fdg
12
dynamic pet
12
function dynamic
8
patlak equation
8
correcting 18f-fdg
8
18f-fdg
6

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Distinguishing whether a system supports alternate low-energy (locally stable) states-stable (true vacuum) versus metastable (false vacuum)-by direct observation can be difficult when the lifetime of the state is very long but otherwise unknown. Here we demonstrate, in a tractable model system, that there are physical phenomena on much shorter timescales that can diagnose the difference. Specifically, we study the time evolution of the magnetization following a quench in the tilted quantum Ising model, and show that its magnitude spectrum is an effective diagnostic.

View Article and Find Full Text PDF

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Wignerian symplectic covariance approach to the interaction-time problem.

Sci Rep

December 2024

Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059, Kraków, Poland.

The concept of the symplectic covariance property of the Wigner distribution function and the symplectic invariance of the Wigner-Rényi entropies has been leveraged to estimate the interaction time of the moving quantum state in the presence of an absolutely integrable time-dependent potential. For this study, the considered scattering centre is represented initially by the Gaussian barrier. Two modifications of this potential energy are considered: a sudden change from barrier to barrier and from barrier to well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!