This paper presents a new approach for the segmentation of color textured images, which is based on a novel energy function. The proposed energy function, which expresses the local smoothness of an image area, is derived by exploiting an intermediate step of modal analysis that is utilized in order to describe and analyze the deformations of a 3-D deformable surface model. The external forces that attract the 3-D deformable surface model combine the intensity of the image pixels with the spatial information of local image regions. The proposed image segmentation algorithm has two steps. First, a color quantization scheme, which is based on the node displacements of the deformable surface model, is utilized in order to decrease the number of colors in the image. Then, the proposed energy function is used as a criterion for a region growing algorithm. The final segmentation of the image is derived by a region merge approach. The proposed method was applied to the Berkeley segmentation database. The obtained results show good segmentation robustness, when compared to other state of the art image segmentation algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2009.2018002 | DOI Listing |
ACS Nano
January 2025
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.
Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!