A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A stochastic approach to estimate the uncertainty involved in B-spline image registration. | LitMetric

A stochastic approach to estimate the uncertainty involved in B-spline image registration.

IEEE Trans Med Imaging

Department of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany.

Published: November 2009

Uncertainties in image registration may be a significant source of errors in anatomy mapping as well as dose accumulation in radiotherapy. It is, therefore, essential to validate the accuracy of image registration. Here, we propose a method to detect areas where mono modal B-spline registration performs well and to distinguish those from areas of the same image, where the registration is likely to be less accurate. It is a stochastic approach to automatically estimate the uncertainty of the resulting displacement vector field. The coefficients resulting from the B-spline registration are subject to moderate and randomly performed variations. A quantity is proposed to characterize the local sensitivity of the similarity measure to these variations. We demonstrate the statistical dependence between the local image registration error and this quantity by calculating their mutual information. We show the significance of the statistical dependence with an approach based on random redistributions. The proposed method has the potential to divide an image into subregions which differ in the magnitude of their average registration error.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2009.2021063DOI Listing

Publication Analysis

Top Keywords

image registration
20
stochastic approach
8
estimate uncertainty
8
registration
8
b-spline registration
8
statistical dependence
8
registration error
8
image
6
approach estimate
4
uncertainty involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!