Efficient plasticization and sufficient crosslinking were achieved by using an acetone-formaldehyde (AF) resin as an additive in the thermal processing of wheat protein-based natural polymers. The mobile AF resin and its strong intermolecular interactions with a wheat protein matrix produced sufficient flexibility for the plastics, while the covalent bonds formed between AF and the protein chains also caused the water-soluble resin to be retained in the materials under wet conditions. The mechanical properties of the materials were also enhanced as an additional benefit due to the formation of crosslinked networks through the polymer matrix. Tensile strength was further enhanced when using AF in conjunction with tannin resin (AFTR) in the systems as rigid aromatic structures were formed in the crosslinking segments. Different components in wheat proteins (WPs) or wheat gluten (WG) (e.g., proteins, residual starch and lipids) displayed different capabilities in interaction and reaction with the AFTR additives, and thus resulted in different performances when the ratio of these components varied in the materials. The application of the AFTR additives provides a feasible methodology to thermally process wheat protein-based natural polymers with improved mechanical performance and water-resistant properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2009.03.028 | DOI Listing |
Food Chem
December 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
Electrospun nanofiber films exhibited significant potential as food freshness indicators (FFI) due to their structural advantages. Herein, a novel electrospinning film based on wheat gluten (WG), gelatin, and anthocyanins was fabricated to detect the freshness of shrimp. Compared with pure WG, an adjusted ratio of the WG to gelatin (W16E9, 16:9) improved physicochemical properties, reducing viscosity from 3.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Engineering, Harbin University of Commerce, 150028 Harbin, China. Electronic address:
To improve the toughness of the rice dough, protein transglutaminase (TGase) combined with sodium metabisulfite (SMB) modification was used. The influences of modification on rice dough and protein were investigated, and their physicochemical and structural characteristics were analyzed. Mechanical analysis results indicated that the tanδ and texture characteristics of the modified rice dough were close to those of the wheat dough.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China. Electronic address:
The non covalent interactions of proteins are usually characterized by solubility, which is based on the principle that specific solvents can disrupt non covalent interactions and promote protein dissolution. However, this method is generally applicable to highly soluble protein materials. The solubility of wheat protein is poor.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Food and Pharmacy College, Xuchang University, Xuchang 461000, China; Collaborative Innovation Center of Functional Food Green Manufacturing, Xuchang 461000, Henan Province, China. Electronic address:
Int J Biol Macromol
November 2024
Department of Food Science and Technology, Ohio State University. 2015 Fyffe Road, Columbus, OH 43210, United States of America; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America. Electronic address:
High moisture extrusion allows the production of plant protein-based products, including meat analogues. Building upon our previous findings showing that zein mixed with rice starch provides the necessary textural properties to formulations, different pea protein-based formulations with varying amounts of zein and rice starch or wheat gluten (as control) were produced using high moisture extrusion and the rheological, textural, and microstructural characteristics were evaluated and associated with the secondary structure of proteins. Samples containing wheat gluten presented desirable rheological and mechanical properties in terms of texturization, which was evidenced by the generation of a layered and three-dimensional viscoelastic network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!