PDT for cancers of the head and neck.

Photodiagnosis Photodyn Ther

Published: March 2009

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2009.03.003DOI Listing

Publication Analysis

Top Keywords

pdt cancers
4
cancers head
4
head neck
4
pdt
1
head
1
neck
1

Similar Publications

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

We conducted a comparative study of the mammary gland microbiota in female Wistar rats and the microbiota associated with breast cancer (BC) induced by the administration of N-methyl-N-nitrosourea, after surgical treatment, photodynamic therapy (PDT), and chemotherapy (CT). Selective nutrient media and a smear-fingerprint technique were used to study the microbiota. Staphylococcus, Streptococcus, and Lactobacillus were found in the mammary glands of intact rats.

View Article and Find Full Text PDF

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

An esophageal stent integrated with wireless battery-free movable photodynamic-therapy unit for targeted tumor treatment.

Mater Today Bio

February 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.

Esophageal cancer is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths. In this study, we propose a novel esophageal stent equipped with a wireless, battery-free, and movable photodynamic therapy (PDT) unit designed to treat esophageal tumors with flexibility, precision, and real-time control. This system integrates a PDT unit and an electrochemical pneumatic soft actuator into a conventional esophageal stent.

View Article and Find Full Text PDF

Cancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!