Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endothelial hyperpermeability, a hallmark of septicemia, is induced by stress fiber formation, which is primarily regulated by the calcium/calmodulin signaling pathway in endothelial cells. We previously reported that trifluoperazine, a calcium/calmodulin antagonist, blocks Vibrio vulnificus cytolysin (VVC) -induced lethality at in vivo animal model. The object of this study was therefore to examine whether VVC induces stress fiber formation through calcium/calmodulin signaling in endothelial cells. Here, we monitored calcium-influx after treatment of VVC using confocal microscopy in CPAE cells, pulmonary endothelial cell line. Interestingly, we found that VVC-induced dose-dependently increases of [Ca(2+)](i) in CPAE cells. Moreover, VVC-induced stress fiber formation as well as phosphorylation of myosin light chain (MLC) in a dose- and time-dependent manner, which was completely blocked by trifluoperazine. These results suggest that the calcium/calmodulin signaling pathway plays a pivotal role in VVC-induced hyperpermeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2009.04.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!