Purpose: To identify the optimal pore size of barrier membranes for successful alveolar ridge reconstruction procedures, to determine if cortical perforations have any effect on bone regeneration, and to reiterate that bone graft containment is an important parameter for successful regeneration.

Materials And Methods: This was a prospective, randomized, controlled study performed on hound dogs. Corticocancellous tibial bone grafting was performed to the lateral border of the mandible and protected with barrier membranes (meshes). The experiment analyzed three different pore sized meshes, compared with controls without the mesh. Two meshes (macroporous and microporous) were made of titanium, and one was a resorbable mesh. Meshes were preformed into the shape of a cube with one face open. Each side of the cube measured approximately 10 mm. Cubes were open-faced on one side, to facilitate packing of the graft material. The dogs received bilateral ramus grafts. Cortical perforations were created on the left ramus of all the dogs and compared with the right side, which did not have perforations. The dogs were randomly divided into 3 groups and sacrificed at intervals of 1, 2, and 4 months. Before sacrifice, all dogs received 2 doses of tetracycline as a marker for new bone formation. Histomorphometry was performed by using Bioquant image-analysis software. Areas of new bone and soft tissue were measured. The rate of mineral apposition was also calculated. All values obtained via histomorphometry were statistically analyzed with a t test.

Results: Thirty-one experimental sites were evaluated. The amount of new bone growth into the macroporous mesh was significantly higher than in the other groups. The mean area of new bone formation in large and small meshes was 66.26 +/- 13.78 mm(2) and 52.82 +/- 24.75 mm(2), respectively. In the resorbable mesh group, the mean area of new bone formed was 46.76 +/- 21.22 mm(2). The amount of new bone formed in the control group was 29.80 +/- 9.35 mm(2). There was no significant difference in amount of bone formation between left and right sides (P = .3172). Resorbable meshes had significant soft tissue ingrowth (23.47 mm(2)) compared with macroporous mesh (16.96 mm(2)) and microporous mesh (22.29 mm(2)). Controls had the least amount of soft tissue ingrowth (9.41 mm(2)). Mineral apposition rate was found to be higher in the resorbable group (2.41 microm/day), and the rate was lowest (1.09 microm/day) in the large pore mesh group.

Conclusion: Macroporous membranes facilitated greater bone regeneration compared with microporous and resorbable membranes. Macroporous mesh also prevented significant soft tissue ingrowth compared with other meshes. Containment of a bone graft is the most critical parameter in successful bone regeneration. Cortical perforations did not have any effect on the quantity of regenerated bone. Further research should be directed toward identifying a critical pore size and manufacturing a reliable mesh that would prevent excessive soft tissue ingrowth in ridge augmentation procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joms.2008.11.022DOI Listing

Publication Analysis

Top Keywords

soft tissue
20
tissue ingrowth
16
bone
14
barrier membranes
12
cortical perforations
12
bone regeneration
12
bone formation
12
amount bone
12
macroporous mesh
12
mesh
9

Similar Publications

Case: A 14-year-old male athlete presented with a 9-month history of low back pain, worse with hyperextension. Nonoperative management for bilateral L4 spondylolysis had been unsuccessful. The patient underwent a novel magnetic resonance imaging (MRI) that generated a synthetic computed tomography (sCT).

View Article and Find Full Text PDF

Case: We present a 42-year-old man who developed extensive left lower extremity arterial thrombosis following COVID-19 pneumonia. Despite multiple revascularization attempts and a below-knee amputation, he faced wound necrosis and insufficient soft tissue coverage. An innovative approach using a pedicled flap and sequential flow-through free flaps was used for limb salvage.

View Article and Find Full Text PDF

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!