F1-ATPase is an enzyme acting as a rotary nano-motor. During catalysis subunits of this enzyme complex rotate relative to other parts of the enzyme. Here we demonstrate that the combination of two input stimuli causes stop of motor rotation. Application of either individual stimulus did not significantly influence motor motion. These findings may contribute to the development of logic gates using single biological motor molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693425 | PMC |
http://dx.doi.org/10.1186/1477-3155-7-3 | DOI Listing |
Biomacromolecules
January 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.
Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFJ Clin Med
December 2024
IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy.
: Sexual dysfunction (SD) in Parkinson's Disease (PD) patients is a common and distressing concern, although it remains an underdiagnosed and undertreated condition. Indeed, the prevalence of SD in PD ranges from 42.6% to 79% in men and from 36% to 87.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.
Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!