Prostate, breast and lung cancers readily develop bone metastases which lead to fractures, hypercalcemia and pain. Malignant growth in the bones depends on osteoclast-mediated bone resorption and in this regard bisphosphonate compounds, which have high-bone affinity and inhibit osteoclast activity, have been found to alleviate bone cancer symptoms. In this study, the bisphosphonate risedronate and its phosphonocarboxylate derivative NE-10790 was tested in a murine bone cancer pain model. Risedronate decreased bone cancer-related bone destruction and pain-related behavior and decreased the spinal expression of glial fibrillary acidic protein, whereas NE-10790 had no effect on these parameters. Furthermore, risedronate but not NE-10790 induced dose-dependent toxicity in NCTC-2472 cells in vitro. Furthermore, the direct toxic effect of risedronate on tumor cells observed in vitro opens the possibility that a direct toxic effect on tumor cells may also be present in vivo and be related to the efficacy of bisphosphonate compounds. In conclusion, these results suggest that risedronate treatment may lead to an increased life quality, in patient suffering from bone cancer, in terms of decreased osteolysis and pain, and merits further study.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.24436DOI Listing

Publication Analysis

Top Keywords

bone cancer
12
pain-related behavior
8
risedronate phosphonocarboxylate
8
bisphosphonate compounds
8
direct toxic
8
tumor cells
8
bone
7
risedronate
6
cancer-induced bone
4
bone loss
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!